ﻻ يوجد ملخص باللغة العربية
The strong light-field effect of (TMTTF)2AsF6 was investigated utilizing 1.5-cycle, 7-fs infrared pulses. The ultarfast (20 fs) and large (40%) response of the plasma-like reflectivity edge (0.7 eV) was analyzed by the changes in omega_p=sqrt(ne2/(epsilon_0*epsilon(infty)*m)} (n: number of charges in the 1/4 filled-band, m: mass of charge, epsilon(infty): dielectric constants for high-frequency and vacuum, e: elementary charge). The 3% reduction in omega_p is attributed to the 6% increase in m. Furthermore, 20 fs oscillation of omega_p in the time domain indicates that the plasma-like edge is affected by the charge gap (0.2 eV) nature. Theoretical calculations suggest that the Coulomb repulsion plays an important role in the increase in m.
We have demonstrated transient charge localization effects with a driving high-frequency field of 7-fs, 1.5-cycle near infrared light in correlated organic conductors. In a layered organic conductor alpha-(BEDT-TTF)2I3 (BEDT-TTF: bis[ethylenedithio]-
Polarization selectivity of light-field-induced charge localization was investigated in an organic metal alpha-(BEDT-TTF)2I3 with a triangular lattice. Dependences of transient reflectivity spectra on polarizations of the 7-fs pump and probe lights i
(TMTTF)2AsF6 undergoes two phase transitions upon cooling from 300 K. At Tco=103 K a charge-ordering (CO) occurs, and at Tsp(B=9 T)=11 K the material undergoes a spin-Peierls (SP) transition. Within the intermediate, CO phase, the charge disproportio
Exciting atomic oscillations with light is a powerful technique to control the electronic properties of materials, leading to remarkable phenomena such as light-induced superconductivity and ultrafast insulator to metal transitions. Here we show that
The quasi one-dimensional organic conductor (TMTTF)2AsF6 shows the charge ordering transition at Tc101K to a state of the ferroelectric Mott insulator which is still well conducting. We present and interpret the experimental data on the gigantic diel