ﻻ يوجد ملخص باللغة العربية
The identification (ID) capacity region of the two-receiver broadcast channel (BC) is shown to be the set of rate-pairs for which, for some distribution on the channel input, each receivers ID rate does not exceed the mutual information between the channel input and the channel output that it observes. Moreover, the capacity regions interior is achieved by codes with deterministic encoders. The results are obtained under the average-error criterion, which requires that each receiver reliably identify its message whenever the message intended for the other receiver is drawn at random. They hold also for channels whose transmission capacity region is to-date unknown. Key to the proof is a new ID code construction for the single-user channel. Extensions to the BC with one-sided feedback and the three-receiver BC are also discussed: inner bounds on their ID capacity regions are obtained, and those are shown to be in some cases tight.
The relay broadcast channel (RBC) is considered, in which a transmitter communicates with two receivers with the assistance of a relay. Based on different degradation orders among the relay and the receivers outputs, three types of physically degrade
The secrecy capacity region for the K-receiver degraded broadcast channel (BC) is given for confidential messages sent to the receivers and to be kept secret from an external wiretapper. Superposition coding and Wyners random code partitioning are us
We establish the deterministic-code capacity region of a network with one transmitter and two receivers: an ordinary receiver and a robust receiver. The channel to the ordinary receiver is a given (known) discrete memoryless channel (DMC), whereas th
Integer-forcing (IF) precoding, also known as downlink IF, is a promising new approach for communication over multiple-input multiple-output (MIMO) broadcast channels. Inspired by the integer-forcing linear receiver for multiple-access channels, it g
Imperfect channel state information degrades the performance of multiple-input multiple-output (MIMO) communications; its effect on single-user (SU) and multi-user (MU) MIMO transmissions are quite different. In particular, MU-MIMO suffers from resid