ﻻ يوجد ملخص باللغة العربية
We construct and study global solutions for the 3-dimensional incompressible MHD systems with arbitrary small viscosity. In particular, we provide a rigorous justification for the following dynamical phenomenon observed in many contexts: the solution initially behaves like non-dispersive waves and the shape of the solution persists for a very long time (proportional to the Reynolds number), thereafter, the solution will be damped due to the long-time accumulation of the diffusive effects, eventually, the total energy of the system becomes extremely small compared to the viscosity so that the diffusion takes over and the solution afterwards decays fast in time. We do not assume any condition on the symmetry or on the vorticity. The size of data and the a priori estimates do not depend on viscosity. The proof is builded upon a novel use of the basic energy identity and a geometric study of the characteristic hypersurfaces. The approach is partly inspired by Christodoulou-Klainermans proof of the nonlinear stability of Minkowski space in general relativity.
We consider the stability problem for standing waves of nonlinear Dirac models. Under a suitable definition of linear stability, and under some restriction on the spectrum, we prove at the same time orbital and asymptotic stability. We are not able t
We are concerned with the nonlinear stability of vortex sheets for the relativistic Euler equations in three-dimensional Minkowski spacetime. This is a nonlinear hyperbolic problem with a characteristic free boundary. In this paper, we introduce a ne
We study global-in-time dynamics of the stochastic nonlinear wave equations (SNLW) with an additive space-time white noise forcing, posed on the two-dimensional torus. Our goal in this paper is two-fold. (i) By introducing a hybrid argument, combinin
In this paper we consider a layer of incompressible viscous fluid lying above a flat periodic surface in a uniform gravitational field. The upper boundary of the fluid is free and evolves in time. We assume that a mass of surfactants resides on the f
We study the behavior of perturbations of small nonlinear Dirac standing waves. We assume that the linear Dirac operator of reference $H=D_m+V$ has only two double eigenvalues and that degeneracies are due to a symmetry of $H$ (theorem of Kramers). I