ﻻ يوجد ملخص باللغة العربية
We present a study on the quantum transport properties of chemically functionalized metallic double-walled carbon nanotubes (DWNTs) with lengths reaching the micrometer scale. First-principles calculations evidence that, for coaxial tubes separated by the typical graphitic van der Waals-bond distance, the chemical modification of the outer wall with sp$^3$-type defects affects the electronic structure of both the outer and the inner tube, which reduces significantly the charge transport capability of the DWNT. For larger spacing between sidewalls, the conductivity of the outer wall decreases with increasing functional group coverage density while charge transport in the inner tube is equivalent to that of a pristine nanotube. Additionally, chemical attachment of CCl$_2$ onto the outer DWNT sidewall barely affect the conjugated $pi$-network of the double-wall and charge transport remains in the quasi-ballistic regime. These results indicate an efficient route for tailoring electronic transport in DWNTs provided inner shell geometry and functional groups are properly chosen.
Double-walled carbon nanotubes (DWCNTs) combined the advantages of multi-walled (MW-) and single-walled (SW-) CNTs can be obtained by transforming the precursors (e.g. fullerene, ferrocene) into thin inner CNTs inside SWCNTs as templates. However, th
We investigate experimentally the transport properties of single-walled carbon nanotube bundles as a function of temperature and applied current over broad intervals of these variables. The analysis is performed on arrays of nanotube bundles whose ax
We have calculated the binding energy of various nucleobases (guanine (G), adenine (A), thymine (T) and cytosine (C)) with (5,5) single-walled carbon nanotubes (SWNTs) using ab-initio Hartre-Fock method (HF) together with force field calculations. Th
The linear polarizability absorption spectra of the double-walled carbon nanotubes (DWNTs) have been calculated by using the tight-binding (TB) model and sum-over-state (SOS) method, supplemented by the first principles CASTEP calculations. It is fou
We have contacted single-walled carbon nanotubes after aligning the tubes by the use of surface acoustic waves. The acoustoelectric current has been measured at 4.2 K and a probing of the low-dimensional electronic states by the surface acoustic wave