ترغب بنشر مسار تعليمي؟ اضغط هنا

Chandra X-ray and Hubble Space Telescope Imaging of Optically Selected Kiloparsec-Scale Binary Active Galactic Nuclei II: Host Galaxy Morphology and AGN Activity

127   0   0.0 ( 0 )
 نشر من قبل Jinyi Shangguan
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kpc-scale binary AGNs with redshifts between 0.1~0.2. Here, we present their host galaxy morphology based on F336W (U-band) and F105W (Y-band) images taken by the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope. Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow up observations. We find that kpc-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U-Y color maps indicate that clumpy star forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray selected AGNs may be biased against gas-rich mergers.

قيم البحث

اقرأ أيضاً

202 - Sagnick Mukherjee 2018
We use data from the All Wavelength Extended Groth Strip International Survey to construct stacked X-ray maps of optically bright active galaxies (AGN) and an associated control sample of galaxies at high redshift (z less than 0.6). From our analysis of the surface brightness profiles obtained from these X-ray maps, we find evidence of feedback from the active nuclei. We find that excluding galaxies and AGN, residing in group environments, from our samples enhances the significance of our detection. Our results support the tentative findings of Chatterjee et al. who use X-ray selected AGN for their analysis. We discuss the implications of these results in the context of quantifying AGN feedback and show that the current method can be used to extract X-ray source population in high redshift galaxies.
We report the analysis of the deep (270 ks) X-ray Chandra data of one of the most radio-loud, Seyfert 2 galaxies in the nearby Universe (z=0.01135), IC 5063. The alignment of the radio structure with the galactic disk and ionized bi-cone, enables us to study the effects of both radio jet and nuclear irradiation on the interstellar medium (ISM). The nuclear and bi-cone spectra suggest a low photoionization phase mixed with a more ionized or thermal gas component, while the cross-cone spectrum is dominated by shocked and collisionally ionized gas emission. The clumpy morphology of the soft (<3 keV) X-ray emission along the jet trails, and the large (~2.4 kpc) filamentary structure perpendicular to the radio jets at softer energies (<1.5 keV), suggest a large contribution of the jet-ISM interaction to the circumnuclear gas emission. The hard X-ray continuum (>3 keV) and the Fe K-alpha 6.4 keV emission are both extended to kpc size along the bi-cone direction, suggesting an interaction of nuclear photons with dense clouds in the galaxy disk, as observed in other Compton Thick (CT) active nuclei. The north-west cone spectrum also exhibits an Fe XXV emission line, which appears spatially extended and spatially correlated with the most intense radio hot-spot, suggesting jet-ISM interaction.
We report the results of a Sloan Digital Sky Survey-IV eBOSS program to target X-ray sources and mid-infrared-selected WISE AGN candidates in a 36.8 deg$^2$ region of Stripe 82. About half this survey (15.6 deg$^2$) covers the largest contiguous port ion of the Stripe 82 X-ray survey. This program represents the largest spectroscopic survey of AGN candidates selected solely by their WISE colors. We combine this sample with X-ray and WISE AGN in the field identified via other sources of spectroscopy, producing a catalog of 4847 sources that is 82% complete to $rsim22$. Based on X-ray luminosities or WISE colors, 4730 of these sources are AGN, with a median sample redshift of $zsim1$. About 30% of the AGN are optically obscured (i.e., lack broad lines in their optical spectra). BPT analysis, however, indicates that 50% of the WISE AGN at $z<0.5$ have emission line ratios consistent with star-forming galaxies, so whether they are buried AGN or star-forming galaxy contaminants is currently unclear. We find that 61% of X-ray AGN are not selected as MIR AGN, with 22% of X-ray AGN undetected by WISE. Most of these latter AGN have high X-ray luminosities ($L_{rm x} > 10^{44}$ erg s$^{-1}$), indicating that MIR selection misses a sizable fraction of the highest luminosity AGN, as well as lower luminosity sources where AGN heated dust is not dominating the MIR emission. Conversely, $sim$58% of WISE AGN are undetected by X-rays, though we do not find that they are preferentially redder than the X-ray detected WISE AGN.
151 - Ryan C. Hickox 2016
Our understanding of the cosmic evolution of supermassive black holes (SMBHs) has been revolutionized by the advent of large multiwavelength extragalactic surveys, which have enabled detailed statistical studies of the host galaxies and large-scale s tructures of active galactic nuclei (AGN). We give an overview of some recent results on SMBH evolution, including the connection between AGN activity and star formation in galaxies, the role of galaxy mergers in fueling AGN activity, the nature of luminous obscured AGN, and the connection between AGN and their host dark matter halos. We conclude by looking to the future of large-scale extragalactic X-ray and spectroscopic surveys.
We present a study of 21 dark gamma-ray burst (GRB) host galaxies, predominantly using X-ray afterglows obtained with the Chandra X-Ray Observatory (CXO) to precisely locate the burst in deep Hubble Space Telescope (HST) imaging of the burst region. The host galaxies are well-detected in F160W in all but one case and in F606W imaging in approx 60 per cent of cases. We measure magnitudes and perform a morphological analysis of each galaxy. The asymmetry, concentration and ellipticity of the dark burst hosts are compared against the host galaxies of optically bright GRBs. In agreement with other studies, we find that dark GRB hosts are redder and more luminous than the bulk of the GRB host population. The distribution of projected spatial offsets for dark GRBs from their host galaxy centroids is comparable to that of optically-bright bursts. The dark GRB hosts are physically larger, more massive and redder, but are morphologically similar to the hosts of bright GRBs in terms of concentration and asymmetry. Our analysis constrains the fraction of high redshift (z greater than 5) GRBs in the sample to approx 14 per cent, implying an upper limit for the whole long-GRB population of less than 4.4 per cent. If dust is the primary cause of afterglow darkening amongst dark GRBs, the measured extinction may require a clumpy dust component in order to explain the observed offset and ellipticity distributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا