ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluctuation Theorem for Many-Body Pure Quantum States

75   0   0.0 ( 0 )
 نشر من قبل Eiki Iyoda
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove the second law of thermodynamics and the nonequilibirum fluctuation theorem for pure quantum states.The entire system obeys reversible unitary dynamics, where the initial state of the heat bath is not the canonical distribution but is a single energy-eigenstate that satisfies the eigenstate-thermalization hypothesis (ETH). Our result is mathematically rigorous and based on the Lieb-Robinson bound, which gives the upper bound of the velocity of information propagation in many-body quantum systems. The entanglement entropy of a subsystem is shown connected to thermodynamic heat, highlighting the foundation of the information-thermodynamics link. We confirmed our theory by numerical simulation of hard-core bosons, and observed dynamical crossover from thermal fluctuations to bare quantum fluctuations. Our result reveals a universal scenario that the second law emerges from quantum mechanics, and can experimentally be tested by artificial isolated quantum systems such as ultracold atoms.



قيم البحث

اقرأ أيضاً

252 - Eiki Iyoda , Kazuya Kaneko , 2017
We reply to Comment by J. Gemmer, L. Knipschild, R. Steinigeweg (arXiv:1712.02128) on our paper Phys. Rev. Lett. 119, 100601 (2017).
We examine the Hall conductivity of macroscopic two-dimensional quantum system, and show that the observed quantities can sometimes violate the fluctuation dissipation theorem (FDT), even in the linear response (LR) regime infinitesimally close to eq uilibrium. The violation can be an order of magnitude larger than the Hall conductivity itself at low temperature and in strong magnetic field, which are accessible in experiments. We further extend the results to general systems and give a necessary condition for such large-scale violation to happen. This violation is a genuine quantum phenomenon that appears on a macroscopic scale. Our results are not only bound to the development of the fundamental issues of nonequilibrium physics, but the idea is also meaningful for practical applications, since the FDT is widely used for the estimation of noises from the LRs.
263 - Xizhi Han , Biao Wu 2014
We construct a complete set of Wannier functions which are localized at both given positions and momenta. This allows us to introduce the quantum phase space, onto which a quantum pure state can be mapped unitarily. Using its probability distribution in quantum phase space, we define an entropy for a quantum pure state. We prove an inequality regarding the long time behavior of our entropys fluctuation. For a typical initial state, this inequality indicates that our entropy can relax dynamically to a maximized value and stay there most of time with small fluctuations. This result echoes the quantum H-theorem proved by von Neumann in [Zeitschrift fur Physik {bf 57}, 30 (1929)]. Our entropy is different from the standard von Neumann entropy, which is always zero for quantum pure states. According to our definition, a system always has bigger entropy than its subsystem even when the system is described by a pure state. As the construction of the Wannier basis can be implemented numerically, the dynamical evolution of our entropy is illustrated with an example.
We study the statistics of the work done, the fluctuation relations and the irreversible entropy production in a quantum many-body system subject to the sudden quench of a control parameter. By treating the quench as a thermodynamic transformation we show that the emergence of irreversibility in the nonequilibrium dynamics of closed many-body quantum systems can be accurately characterized. We demonstrate our ideas by considering a transverse quantum Ising model that is taken out of equilibrium by the instantaneous switching of the transverse field.
Bridging the second law of thermodynamics and microscopic reversible dynamics has been a longstanding problem in statistical physics. We here address this problem on the basis of quantum many-body physics, and discuss how the entropy production satur ates in isolated quantum systems under unitary dynamics. First, we rigorously prove the saturation of the entropy production in the long time regime, where a total system can be in a pure state. Second, we discuss the non-negativity of the entropy production at saturation, implying the second law of thermodynamics. This is based on the eigenstate thermalization hypothesis (ETH), which states that even a single energy eigenstate is thermal. We also numerically demonstrate that the entropy production saturates at a non-negative value even when the initial state of a heat bath is a single energy eigenstate. Our results reveal fundamental properties of the entropy production in isolated quantum systems at late times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا