ترغب بنشر مسار تعليمي؟ اضغط هنا

Persistent paramagnons deep in the metallic phase of Sr$_{2-x}$La$_x$IrO$_4$

87   0   0.0 ( 0 )
 نشر من قبل Hlynur Gretarsson Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the magnetic excitations of electron-doped Sr$_{2-x}$La$_x$IrO$_4$ ($0 leq x leq 0.10$) using resonant inelastic x-ray scattering (RIXS) at the Ir L$_3$-edge. The long range magnetic order is rapidly lost with increasing $x$, but two-dimensional short-range order (SRO) and dispersive magnon excitations with nearly undiminished spectral weight persist well into the metallic part of the phase diagram. The magnons in the SRO phase are heavily damped and exhibit anisotropic softening. Their dispersions are well described by a pseudospin-1/2 Heisenberg model with exchange interactions whose spatial range increases with doping. We also find a doping-independent high-energy magnetic continuum, which is not described by this model. The spin-orbit excitons arising from the pseudospin-3/2 manifold of the Ir ions broaden substantially in the SRO phase, but remain largely separated from the low-energy magnons. Pseudospin-1/2 models are therefore a good starting point for the theoretical description of the low-energy magnetic dynamics of doped iridates.



قيم البحث

اقرأ أيضاً

Electronic structure has been studied in lightly electron doped correlated spin-orbit insulator Sr$_2$IrO$_4$ by angle-resolved photoelectron spectroscopy. We have observed coexistence of the lower Hubbard band and the in-gap band, the momentum depen dence of the latter traces that of the band calculations without on-site Coulomb repulsion. The in-gap state remained anisotropically gapped in all observed momentum area, forming a remnant Fermi surface state, evolving towards the Fermi energy by carrier doping. These experimental results show a striking similarity with those observed in deeply underdoped cuprates, suggesting the common nature of the nodal liquid states observed in both compounds.
The magnetic correlations within the cuprates have undergone intense scrutiny as part of efforts to understand high temperature superconductivity. We explore the evolution of the magnetic correlations along the nodal direction of the Brillouin zone i n La2-xSrxCuO4, spanning the doping phase diagram from the anti-ferromagnetic Mott insulator at x = 0 to the metallic phase at x = 0.26. Magnetic excitations along this direction are found to be systematically softened and broadened with doping, at a higher rate than the excitations along the anti-nodal direction. This phenomenology is discussed in terms of the nature of the magnetism in the doped cuprates. Survival of the high energy magnetic excitations, even in the overdoped regime, indicates that these excitations are marginal to pairing, while the influence of the low energy excitations remains ambiguous.
The local structure of correlated spin-orbit insulator Sr$_{2-x}$M$_x$IrO$_4$ (M = K, La) has been investigated by Ir L$_3$-edge extended x-ray absorption fine structure measurements. The measurements were performed as a function of temperature for d ifferent dopings induced by substitution of Sr with La or K. It is found that Ir-O bonds have strong covalency and they hardly show any change across the Neel temperature. In the studied doping range, neither Ir-O bonds nor their dynamics, measured by their mean square relative displacements, show any appreciable change upon carrier doping, indicating possibility of a nanoscale phase separation in the doped system. On the other hand, there is a large increase of the static disorder in Ir-Sr correlation, larger for K doping than La doping. Similarities and differences with respect to the local lattice displacements in cuprates are briefly discussed.
We report detailed thermodynamic and transport measurements for non-superconducting La$_{1.7}$Sr$_{0.3}$CuO$_4$. Collectively, these data reveal that a highly-correlated Fermi-liquid ground state exists in La$_{2-x}$Sr$_x$CuO$_4$ beyond the supercond ucting dome, and confirm that charge transport in the cuprates is dominated at finite temperatures by intense electron-electron scattering.
158 - Y. Drees , Z. W. Li , A. Ricci 2015
The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magn etic excitations within are believed to be connected to the pairing mechanism which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconductivity in cuprate superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا