ﻻ يوجد ملخص باللغة العربية
Let $Gamma$ be a torsion-free hyperbolic group. We study $Gamma$--limit groups which, unlike the fundamental case in which $Gamma$ is free, may not be finitely presentable or geometrically tractable. We define model $Gamma$--limit groups, which always have good geometric properties (in particular, they are always relatively hyperbolic). Given a strict resolution of an arbitrary $Gamma$--limit group $L$, we canonically construct a strict resolution of a model $Gamma$--limit group, which encodes all homomorphisms $Lto Gamma$ that factor through the given resolution. We propose this as the correct framework in which to study $Gamma$--limit groups algorithmically. We enumerate all $Gamma$--limit groups in this framework.
We show that Out(G) is residually finite if G is a one-ended group that is hyperbolic relative to virtually polycyclic subgroups. More generally, if G is one-ended and hyperbolic relative to proper residually finite subgroups, the group of outer auto
We study conjugacy classes of solutions to systems of equations and inequations over torsion-free hyperbolic groups, and describe an algorithm to recognize whether or not there are finitely many conjugacy classes of solutions to such a system. The cl
We introduce an obstruction to the existence of a coarse embedding of a given group or space into a hyperbolic group, or more generally into a hyperbolic graph of bounded degree. The condition we consider is admitting exponentially many fat bigons, a
For every group $G$, we introduce the set of hyperbolic structures on $G$, denoted $mathcal{H}(G)$, which consists of equivalence classes of (possibly infinite) generating sets of $G$ such that the corresponding Cayley graph is hyperbolic; two genera
We prove that the set of limit groups is recursive, answering a question of Delzant. One ingredient of the proof is the observation that a finitely presented group with local retractions (a la Long and Reid) is coherent and, furthermore, there exists