ﻻ يوجد ملخص باللغة العربية
By taking the semantic object parsing task as an exemplar application scenario, we propose the Graph Long Short-Term Memory (Graph LSTM) network, which is the generalization of LSTM from sequential data or multi-dimensional data to general graph-structured data. Particularly, instead of evenly and fixedly dividing an image to pixels or patches in existing multi-dimensional LSTM structures (e.g., Row, Grid and Diagonal LSTMs), we take each arbitrary-shaped superpixel as a semantically consistent node, and adaptively construct an undirected graph for each image, where the spatial relations of the superpixels are naturally used as edges. Constructed on such an adaptive graph topology, the Graph LSTM is more naturally aligned with the visual patterns in the image (e.g., object boundaries or appearance similarities) and provides a more economical information propagation route. Furthermore, for each optimization step over Graph LSTM, we propose to use a confidence-driven scheme to update the hidden and memory states of nodes progressively till all nodes are updated. In addition, for each node, the forgets gates are adaptively learned to capture different degrees of semantic correlation with neighboring nodes. Comprehensive evaluations on four diverse semantic object parsing datasets well demonstrate the significant superiority of our Graph LSTM over other state-of-the-art solutions.
Semantic object parsing is a fundamental task for understanding objects in detail in computer vision community, where incorporating multi-level contextual information is critical for achieving such fine-grained pixel-level recognition. Prior methods
This paper addresses the problem of geometric scene parsing, i.e. simultaneously labeling geometric surfaces (e.g. sky, ground and vertical plane) and determining the interaction relations (e.g. layering, supporting, siding and affinity) between main
For a given video-based Human-Object Interaction scene, modeling the spatio-temporal relationship between humans and objects are the important cue to understand the contextual information presented in the video. With the effective spatio-temporal rel
In this paper, we address unsupervised pose-guided person image generation, which is known challenging due to non-rigid deformation. Unlike previous methods learning a rock-hard direct mapping between human bodies, we propose a new pathway to decompo
Scene Graph Generation (SGG) aims to extract entities, predicates and their semantic structure from images, enabling deep understanding of visual content, with many applications such as visual reasoning and image retrieval. Nevertheless, existing SGG