ترغب بنشر مسار تعليمي؟ اضغط هنا

Reanalysis of Rosenbluth measurements of the proton form factors

66   0   0.0 ( 0 )
 نشر من قبل Alexander Gramolin
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a reanalysis of the data from Stanford Linear Accelerator Center (SLAC) experiments E140 [R. C. Walker et al., Phys. Rev. D 49, 5671 (1994)] and NE11 [L. Andivahis et al., Phys. Rev. D 50, 5491 (1994)] on elastic electron-proton scattering. This work is motivated by recent progress in calculating the corresponding radiative corrections and by the apparent discrepancy between the Rosenbluth and polarization transfer measurements of the proton electromagnetic form factors. New, corrected values for the scattering cross sections are presented, as well as a new form factor fit in the $Q^2$ range from 1 to 8.83 $text{GeV}^2$. We also provide a complete set of revised formulas to account for radiative corrections in single-arm measurements of unpolarized elastic electron-proton scattering.

قيم البحث

اقرأ أيضاً

We report the results of a new Rosenbluth measurement of the proton form factors at Q^2 values of 2.64, 3.20 and 4.10 GeV^2. Cross sections were determined by detecting the recoiling proton in contrast to previous measurements in which the scattered electron was detected. At each Q^2, relative cross sections were determined to better than 1%. The measurement focussed on the extraction of G_E/G_M which was determined to 4-8% and found to approximate form factor scaling, i.e. mu_p G_E approx G_M. These results are consistent with and much more precise than previous Rosenbluth extractions. However, they are inconsistent with recent polarization transfer measurements of comparable precision, implying a systematic difference between the two techniques.
The paper describes a precise measurement of electron scattering off the proton at momentum transfers of $0.003 lesssim Q^2 lesssim 1$ GeV$^2$. The average point-to-point error of the cross sections in this experiment is $sim$ 0.37%. These data are u sed for a coherent new analysis together with all world data of unpolarized and polarized electron scattering from the very smallest to the highest momentum transfers so far measured. The extracted electric and magnetic form factors provide new insight into their exact shape, deviating from the classical dipole form, and of structure on top of this gross shape. The data reaching very low $Q^2$ values are used for a new determination of the electric and magnetic radii. An empirical determination of the Two-Photon-Exchange (TPE) correction is presented. The implications of this correction on the radii and the question of a directly visible signal of the pion cloud are addressed.
The electromagnetic form factors of the nucleon characterize the effect of its internal structure on its response to an electromagnetic probe as studied in elastic electron-nucleon scattering. These form factors are functions of the squared four-mome ntum transfer $Q^2$ between the electron and the proton. The two main classes of observables of this reaction are the scattering cross section and polarization asymmetries, both of which are sensitive to the form factors in different ways. When considering large momentum transfers, double-polarization observables offer superior sensitivity to the electric form factor. This thesis reports the results of a new measurement of the ratio of the electric and magnetic form factors of the proton at high momentum transfer using the recoil polarization technique. A polarized electron beam was scattered from a liquid hydrogen target, transferring polarization to the recoiling protons. These protons were detected in a magnetic spectrometer which was used to reconstruct their kinematics, including their scattering angles and momenta, and the position of the interaction vertex. A proton polarimeter measured the polarization of the recoiling protons by measuring the azimuthal asymmetry in the angular distribution of protons scattered in CH$_2$ analyzers. The scattered electron was detected in a large-acceptance electromagnetic calorimeter in order to suppress inelastic backgrounds. The measured ratio of the transverse and longitudinal polarization components of the scattered proton is directly proportional to the ratio of form factors $G_E^p/G_M^p$. The measurements reported in this thesis took place at $Q^2=$5.2, 6.7, and 8.5 GeV$^2$, and represent the most accurate measurements of $G_E^p$ in this $Q^2$ region to date.
163 - M. E. Christy , T. Gautam , L. Ou 2021
We report new precision measurements of the elastic electron-proton scattering cross section for momentum transfer squared (Q$^2$) up to 15.75~gevsq. These data allow for improved extraction of the proton magnetic form factor at high Q$^2$ and nearly double the Q$^2$ range of direct longitudinal/transverse separated cross sections. A comparison of our results to polarization measurements establishes the presence of hard two-photon exchange in the $e$-$p$ elastic scattering cross section at greater than 95% confidence level for Q$^2$ up to 8 (GeV/c)$^2$.
Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleons quark constituents; indeed, recent proton data have a ttracted intense theoretical interest. In this letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6.7, and 8.5 GeV2. By extending the range of Q2 for which GEp is accurately determined by more than 50%, these measurements will provide significant constraints on models of nucleon structure in the non-perturbative regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا