ﻻ يوجد ملخص باللغة العربية
We investigate properties of carbon-oxygen white dwarfs with respect to the composite uncertainties in the reaction rates using the stellar evolution toolkit, Modules for Experiments in Stellar Astrophysics (MESA) and the probability density functions in the reaction rate library STARLIB. These are the first Monte Carlo stellar evolution studies that use complete stellar models. Focusing on 3 M$_{odot}$ models evolved from the pre main-sequence to the first thermal pulse, we survey the remnant core mass, composition, and structure properties as a function of 26 STARLIB reaction rates covering hydrogen and helium burning using a Principal Component Analysis and Spearman Rank-Order Correlation. Relative to the arithmetic mean value, we find the width of the 95% confidence interval to be $Delta M_{{rm 1TP}}$ $approx$ 0.019 M$_{odot}$ for the core mass at the first thermal pulse, $Delta$$t_{rm{1TP}}$ $approx$ 12.50 Myr for the age, $Delta log(T_{{rm c}}/{rm K}) approx$ 0.013 for the central temperature, $Delta log(rho_{{rm c}}/{rm g cm}^{-3}) approx$ 0.060 for the central density, $Delta Y_{rm{e,c}} approx$ 2.6$times$10$^{-5}$ for the central electron fraction, $Delta X_{rm c}(^{22}rm{Ne}) approx$ 5.8$times$10$^{-4}$, $Delta X_{rm c}(^{12}rm{C}) approx$ 0.392, and $Delta X_{rm c}(^{16}rm{O}) approx$ 0.392. Uncertainties in the experimental $^{12}$C($alpha,gamma)^{16}rm{O}$, triple-$alpha$, and $^{14}$N($p,gamma)^{15}rm{O}$ reaction rates dominate these variations. We also consider a grid of 1 to 6 M$_{odot}$ models evolved from the pre main-sequence to the final white dwarf to probe the sensitivity of the initial-final mass relation to experimental uncertainties in the hydrogen and helium reaction rates.
The carbon-oxygen white dwarf (CO WD) + He star channel is one of the promising ways for producing type Ia supernovae (SNe Ia) with short delay times. Recent studies found that carbon under the He-shell can be ignited if the mass-accretion rate of CO
Recent studies have shown that for suitable initial conditions both super- and sub-Chandrasekhar mass carbon-oxygen white dwarf mergers produce explosions similar to observed SNe Ia. The question remains, however, how much fine tuning is necessary to
Ultra-massive white dwarfs are relevant for their role as type Ia Supernova progenitors, the occurrence of physical processes in the asymptotic giant-branch phase, the existence of high-field magnetic white dwarfs, and the occurrence of double white
The double-degenerate model, involving the merger of double carbon-oxygen white dwarfs (CO WDs), is one of the two classic models for the progenitors of type Ia supernovae (SNe Ia). Previous studies suggested that off-centre carbon burning would occu
(Abridged abstract) We explore the formation of ultra-massive (M_{rm WD} gtrsim 1.05 M_sun$), carbon-oxygen core white dwarfs resulting from single stellar evolution. We also study their evolutionary and pulsational properties and compare them with t