ترغب بنشر مسار تعليمي؟ اضغط هنا

A Latitude-Dependent Analysis of the Leptonic Hypothesis for the Fermi Bubbles

99   0   0.0 ( 0 )
 نشر من قبل Sruthi Narayanan
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Fermi Bubbles are giant Galactic structures observed in both gamma-rays and microwaves. Recent studies have found support for the hypothesis that the gamma-ray and microwave emission can both be understood as arising from a hard cosmic-ray electron population within the volume of the Bubbles, via inverse Compton scattering and synchrotron radiation respectively. The relative rates of these processes are set by the relative energy density of the interstellar radiation field and the magnetic field within the Bubbles; consequently, under the hypothesis of a common origin, the combination of the gamma-ray and microwave measurements can be used to estimate the magnetic field within the Bubbles. We revisit the consistency of this hypothesis on a latitude-by-latitude basis, using data from Fermi, WMAP and Planck; estimate the variation of the electron spectrum within the Bubbles; and infer bounds on the magnetic field within the Bubbles as a function of distance from the Galactic plane. We find that while the microwave and gamma-ray spectra are generally consistent with the leptonic hypothesis for few-microGauss magnetic fields, there appears to be a preference for spectral hardening in the microwaves at mid-latitudes (especially in the |b|~ 25-35 degree range) that is not mirrored in the gamma rays. This result may hint at a non-leptonic contribution to the gamma-ray spectra; however, the discrepancy can be reconciled in purely leptonic models if the cutoff energy for the electrons is lower in this latitude range and the spectrum below the cutoff is harder.

قيم البحث

اقرأ أيضاً

91 - Uri Keshet , Ilya Gurwich 2017
The nature of the bipolar, $gamma$-ray Fermi bubbles (FB) is still unclear, in part because their faint, high-latitude X-ray counterpart has until now eluded a clear detection. We stack ROSAT data at varying distances from the FB edges, thus boosting the signal and identifying an expanding shell behind the southwest, southeast, and northwest edges, albeit not in the dusty northeast sector near Loop I. A Primakoff-like model for the underlying flow is invoked to show that the signals are consistent with halo gas heated by a strong, forward shock to $sim$keV temperatures. Assuming ion--electron thermal equilibrium then implies a $sim10^{56}$ erg event near the Galactic centre $sim7$ Myr ago. However, the reported high absorption-line velocities suggest a preferential shock-heating of ions, and thus more energetic ($sim 10^{57}$ erg), younger ($lesssim 3$ Myr) FBs.
We study stochastic acceleration models for the Fermi bubbles. Turbulence is excited just behind the shock front via Kelvin--Helmholtz, Rayleigh--Taylor, or Richtmyer--Meshkov instabilities, and plasma particles are continuously accelerated by the in teraction with the turbulence. The turbulence gradually decays as it goes away from the shock fronts. Adopting a phenomenological model for the stochastic acceleration, we explicitly solve the temporal evolution of the particle energy distribution in the turbulence. Our results show that the spatial distribution of high-energy particles is different from those for a steady solution. We also show that the contribution of electrons that escaped from the acceleration regions significantly softens the photon spectrum. The photon spectrum and surface brightness profile are reproduced by our models. If the escape efficiency is very high, the radio flux from the escaped low-energy electrons can be comparable to that of the WMAP haze. We also demonstrate hadronic models with the stochastic acceleration, but they are unlikely in the viewpoint of the energy budget.
We analyze the IceCube four-year neutrino data in search of a signal from the Fermi bubbles. No signal is found from the bubbles or from their dense shell, even when taking into account the softer background. This imposes a conservative $xi_i<8%$ upp er limit on the cosmic-ray ion (CRI) acceleration efficiency, and an $etaequiv xi_e/xi_i gtrsim0.006$ lower limit on the electron-to-ion ratio of acceleration efficiencies (at the $2sigma$ confidence level). For typical $xi_i$, a signal should surface once the number of IceCube neutrinos increases by $sim$an order of magnitude, unless there is a $<$PeV cutoff on the CRI spectrum.
69 - Charles Dermer 2011
Some questions raised by Fermi-LAT data about blazars are summarized, along with attempts at solutions within the context of leptonic models. These include both spectral and statistical questions, including the origin of the GeV breaks in low-synchro tron peaked blazars, the location of the gamma-ray emission sites, the correlations in the spectral energy distributions with luminosity, and the difficulty of synchrotron/SSC models to fit the spectra of some TeV blazars.
Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predi ct the emission of high-energy neutrinos and gamma rays with similar fluxes. The ANTARES detector, a neutrino telescope located in the Mediterranean Sea, has a good visibility to the Fermi bubble regions. Using data collected from 2008 to 2011 no statistically significant excess of events is observed and therefore upper limits on the neutrino flux in TeV range from the Fermi bubbles are derived for various assumed energy cutoffs of the source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا