ﻻ يوجد ملخص باللغة العربية
We study topological properties of one-dimensional nonlinear bichromatic superlattices and unveil the effect of nonlinearity on topological states. We find the existence of nontrivial edge solitions, which distribute on the boundaries of the lattice with their chemical potential located in the linear gap regime and are sensitive to the phase parameter of the superlattice potential. We further demonstrate that the topological property of the nonlinear Bloch bands can be characterized by topological Chern numbers defined in the extended two-dimensional parameter space. In addition, we discuss that the composition relations between the nolinear Bloch waves and gap solitions for the nonlinear superlattices. The stabilities of edge solitons are also studied.
We comprehensively investigate the nontrivial states of interacting Bose system in one-dimensional optical superlattices under the open boundary condition. Our results show that there exists a kind of stable localized states: edge gap solitons. We ar
We calculated the phase diagram of a continuous system of hard spheres loaded in a quasi-one dimensional bichromatic optical lattice. The wavelengths of both lattice-defining lasers were chosen to model an incommensurate arrangement. Densities of one
The intriguing properties, especially Dirac physics in graphene, have inspired the pursuit of two-dimensional materials in honeycomb structure. Here we achieved a monolayer transition metal monochalcogenide AgTe on Ag(111) by tellurization of the sub
The classification of topological states of matter in terms of unitary symmetries and dimensionality predicts the existence of nontrivial topological states even in zero-dimensional systems, i.e., a system with a discrete energy spectrum. Here, we sh