ترغب بنشر مسار تعليمي؟ اضغط هنا

Bi-Local Holography in the SYK Model

77   0   0.0 ( 0 )
 نشر من قبل Kenta Suzuki
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss large $N$ rules of the Sachdev-Ye-Kitaev model and the bi-local representation of holography of this theory. This is done by establishing $1/N$ Feynman rules in terms of bi-local propagators and vertices, which can be evaluated following the recent procedure of Polchinski and Rosenhaus. These rules can be interpreted as Witten type diagrams of the dual AdS theory, which we are able to define at IR fixed point and off.

قيم البحث

اقرأ أيضاً

We continue the study of the Sachdev-Ye-Kitaev model in the Large $N$ limit. Following our formulation in terms of bi-local collective fields with dynamical reparametrization symmetry, we perform perturbative calculations around the conformal IR point.
We present in detail the basic ingredients contained in bi-local holography, representing a constructive scheme for reconstructing AdS bulk theories in Vectorial/AdS duality. Explicit Mapping to bulk AdS and higher spin fields is seen to be given by a double Fourier transform. All order interactions are explicitly specified through the collective action. This generates bulk Feynman (Witten) diagrams (at tree and loop level). We give details of the four-point case evaluation. It is noted that the bi-local construction goes beyond the assumptions in various discussions of non-locality.
We consider the question of identifying the bulk space-time of the SYK model. Focusing on the signature of emergent space-time of the (Euclidean) model, we explain the need for non-local (Radon-type) transformations on external legs of $n$-point Gree ns functions. This results in a dual theory with Euclidean AdS signature with additional leg-factors. We speculate that these factors incorporate the coupling of additional bulk states similar to the discrete states of 2d string theory.
We study a two-site Sachdev-Ye-Kitaev (SYK) model with complex couplings, and identify a low temperature transition to a gapped phase characterized by a constant in temperature free energy. This transition is observed without introducing a coupling b etween the two sites, and only appears after ensemble average over the complex couplings. We propose a gravity interpretation of these results by constructing an explicit solution of Jackiw-Teitelboim (JT) gravity with matter: a two-dimensional Euclidean wormhole whose geometry is the double trumpet. This solution is sustained by imaginary sources for a marginal operator, without the need of a coupling between the two boundaries. As the temperature is decreased, there is a transition from a disconnected phase with two black holes to the connected wormhole phase, in qualitative agreement with the SYK observation. The expectation value of the marginal operator is an order parameter for this transition. This illustrates in a concrete setup how a Euclidean wormhole can arise from an average over field theory couplings.
We argue that stringy effects in a putative gravity-dual picture for SYK-like models are related to the branching time, a kinetic coefficient defined in terms of the retarded kernel. A bound on the branching time is established assuming that the lead ing diagrams are ladders with thin rungs. Thus, such models are unlikely candidates for sub-AdS holography. In the weak coupling limit, we derive a relation between the branching time, the Lyapunov exponent, and the quasiparticle lifetime using two different approximations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا