ترغب بنشر مسار تعليمي؟ اضغط هنا

Sardinia Radio Telescope: General Description, Technical Commissioning and First Light

96   0   0.0 ( 0 )
 نشر من قبل Isabella Prandoni
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the period 2012 June - 2013 October, the Sardinia Radio Telescope (SRT) went through the technical commissioning phase. The characterization involved three first-light receivers, ranging in frequency between 300MHz and 26GHz, connected to a Total Power back-end. It also tested and employed the telescope active surface installed in the main reflector of the antenna. The instrument status and performance proved to be in good agreement with the expectations in terms of surface panels alignment (at present 300 um rms to be improved with microwave holography), gain (~0.6 K/Jy in the given frequency range), pointing accuracy (5 arcsec at 22 GHz) and overall single-dish operational capabilities. Unresolved issues include the commissioning of the receiver centered at 350 MHz, which was compromised by several radio frequency interferences, and a lower-than-expected aperture efficiency for the 22-GHz receiver when pointing at low elevations. Nevertheless, the SRT, at present completing its Astronomical Validation phase, is positively approaching its opening to the scientific community.



قيم البحث

اقرأ أيضاً

[Abridged] The Sardinia Radio Telescope (SRT) is the new 64-m dish operated by INAF (Italy). Its active surface will allow us to observe at frequencies of up to 116 GHz. At the moment, three receivers, one per focal position, have been installed and tested. The SRT was officially opened in October 2013, upon completion of its technical commissioning phase. In this paper, we provide an overview of the main science drivers for the SRT, describe the main outcomes from the scientific commissioning of the telescope, and discuss a set of observations demonstrating the SRTs scientific capabilities. One of the main objectives of scientific commissioning was the identification of deficiencies in the instrumentation and/or in the telescope sub-systems for further optimization. As a result, the overall telescope performance has been significantly improved. As part of the scientific commissioning activities, different observing modes were tested and validated, and first astronomical observations were carried out to demonstrate the science capabilities of the SRT. In addition, we developed astronomer-oriented software tools, to support future observers on-site. The astronomical validation activities were prioritized based on technical readiness and scientific impact. The highest priority was to make the SRT available for joint observations as part of European networks. As a result, the SRT started to participate (in shared-risk mode) in EVN (European VLBI Network) and LEAP (Large European Array for Pulsars) observing sessions in early 2014. The validation of single-dish operations for the suite of SRT first light receivers and backends continued in the following years, and was concluded with the first call for shared-risk/early-science observations issued at the end of 2015.
We describe the deployment and first tests on Sky of CONCERTO, a large field-of-view (18.6arc-min) spectral-imaging instrument. The instrument operates in the range 130-310GHz from the APEX 12-meters telescope located at 5100m a.s.l. on the Chajnanto r plateau. Spectra with R=1-300 are obtained using a fast (2.5Hz mechanical frequency) Fourier Transform Spectrometer (FTS), coupled to a continuous dilution cryostat with a base temperature of 60mK. Two 2152-pixels arrays of Lumped Element Kinetic Inductance Detectors (LEKID) are installed in the cryostat that also contains the cold optics and the front-end electronics. CONCERTO, installed in April 2021, generates more than 20k spectra per second during observations. We describe the final development phases, the installation and the first results obtained on Sky.
170 - E. Egron , A. Pellizzoni , S. Loru 2016
In the frame of the Astronomical Validation activities for the 64m Sardinia Radio Telescope, we performed 5-22 GHz imaging observations of the complex-morphology supernova remnants (SNRs) W44 and IC443. We adopted innovative observing and mapping tec hniques providing unprecedented accuracy for single-dish imaging of SNRs at these frequencies, revealing morphological details typically available only at lower frequencies through interferometry observations. High-frequency studies of SNRs in the radio range are useful to better characterize the spatially-resolved spectra and the physical parameters of different regions of the SNRs interacting with the ISM. Furthermore, synchrotron-emitting electrons in the high-frequency radio band are also responsible for the observed high-energy phenomenology as -e.g.- Inverse Compton and bremsstrahlung emission components observed in gamma-rays, to be disentangled from hadron emission contribution (providing constraints on the origin of cosmic rays).
85 - T. Saito , C. Delgado , O. Blanch 2021
The first Large Size Telescope (LST-1) of the Cherenkov Telescope Array has been operational since October 2018 at La Palma, Spain. We report on the results obtained during the camera commissioning. The noise level of the readout is determined as a 0 .2 p.e. level. The gain of PMTs are well equalized within 2% variation, using the calibration flash system. The effect of the night sky background on the signal readout noise as well as the PMT gain estimation are also well evaluated. Trigger thresholds are optimized for the lowest possible gamma-ray energy threshold and the trigger distribution synchronization has been achieved within 1~ns precision. Automatic rate control realizes the stable observation with 1.5% rate variation over 3 hours. The performance of the novel DAQ system demonstrates a less than 10% dead time for 15 kHz trigger rate even with sophisticated online data correction.
GIARPS (GIAno & haRPS) is a project devoted to have on the same focal station of the Telescopio Nazionale Galileo (TNG) both high resolution spectrographs, HARPS-N (VIS) and GIANO-B (NIR), working simultaneously. This could be considered the first an d unique worldwide instrument providing cross-dispersed echelle spectroscopy at a resolution of 50,000 in the NIR range and 115,000 in the VIS and over in a wide spectral range ($0.383 - 2.45 mu$m) in a single exposure. The science case is very broad, given the versatility of such an instrument and its large wavelength range. A number of outstanding science cases encompassing mainly extra-solar planet science starting from rocky planets search and hot Jupiters to atmosphere characterization can be considered. Furthermore both instruments can measure high precision radial velocities by means the simultaneous thorium technique (HARPS-N) and absorbing cell technique (GIANO-B) in a single exposure. Other science cases are also possible. GIARPS, as a brand new observing mode of the TNG started after the moving of GIANO-A (fiber fed spectrograph) from Nasmyth-A to Nasmyth-B where it was re-born as GIANO-B (no more fiber feed spectrograph). The official Commissioning finished on March 2017 and then it was offered to the community. Despite the work is not finished yet. In this paper we describe the preliminary scientific results obtained with GIANO-B and GIARPS observing mode with data taken during commissioning and first open time observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا