ﻻ يوجد ملخص باللغة العربية
One of the most strikingly universal features of the high temperature superconductors is that the superconducting phase emerges in the close proximity of the antiferromagnetic phase, and the interplay between these two phases poses a long standing challenge. It is commonly believed that,as the antiferromagnetic transition temperature is continuously suppressed to zero, there appears a quantum critical point, around which the existence of antiferromagnetic fluctuation is responsible for the development of the superconductivity. In contrast to this scenario, we report the discovery of a bi-critical point identified at 2.88 GPa and 26.02 K in the pressurized high quality single crystal Ca0.73La0.27FeAs2 by complementary in situ high pressure measurements. At the critical pressure, we find that the antiferromagnetism suddenly disappears and superconductivity simultaneously emerges at almost the same temperature, and that the external magnetic field suppresses the superconducting transition temperature but hardly affects the antiferromagnetic transition temperature.
Unconventional superconductivity frequently emerges as the transition temperature of a magnetic phase, typically antiferromagnetic, is suppressed continuously toward zero temperature. Here, we report contrary behavior in pressurized CeRhGe3, a non-ce
MnBi2Te4 has attracted tremendous research interest recently as the first intrinsic antiferromagnetic (AF) topological insulator. It undergoes a long-range AF order at TN = 24 K accompanied with a cusp-like anomaly in the metallic resistivity. Here,
We report the results of an experimental study of dc and low frequencies magnetic properties of K$_{0.8}$Fe$_{2}$Se$_2$ single crystal when the dc magnetic field is applied parallel to the $bf{ab}$ plane. From the data obtained, we deduce the full H-
To investigate the origin of the enhanced Tc ({approx} 110 K) of the trilayer cuprate superconductor Bi2Sr2Ca2Cu3O10+{delta} (Bi-2223), its underdoped single crystals are a critical requirement. Here, we demonstrate the first successful in-plane resi
Superconductivity in noncentrosymmetric LaNiC$_2$ is expected to be induced by electron--phonon interactions due to its lack of magnetic instabilities. The non-Bardeen-Cooper-Schrieffer (BCS) behaviors found in this material call into question the lo