ﻻ يوجد ملخص باللغة العربية
We present 8.5 arcsec resolution 1.1mm continuum imaging and CO spectroscopic redshift measurements of eight extremely bright submillimetre galaxies identified from the Planck and Herschel surveys, taken with the Large Millimeter Telescopes AzTEC and Redshift Search Receiver instruments. We compiled a candidate list of high redshift galaxies by cross-correlating the Planck Surveyor missions highest frequency channel (857 GHz, FWHM = 4.5 arcmin) with the archival Herschel Spectral and Photometric Imaging Receiver (SPIRE) imaging data, and requiring the presence of a unique, single Herschel counterpart within the 150 arcsec search radius of the Planck source positions with 350 micron flux density larger than 100 mJy, excluding known blazars and foreground galaxies. All eight candidate objects observed are detected in 1.1mm continuum by AzTEC bolometer camera, and at least one CO line is detected in all cases with a spectroscopic redshift between 1.3 < z(CO) < 3.3. Their infrared spectral energy distributions mapped using the Herschel and AzTEC photometry are consistent with cold dust emission with characteristic temperature between $T_d$ = 43 K and 84 K. With apparent infrared luminosity of up to L(IR) = $3times10^{14} mu^{-1} L_odot$, they are some of the most luminous galaxies ever found (with yet unknown gravitational magnification factor $mu$). The analysis of their spectral energy distributions (SEDs) suggests that star formation is powering the bulk of their extremely large IR luminosities. Derived molecular gas masses of $M_{H2}=(0.6-7.8)times 10^{11} M_odot$ (for $mu$~10) also make them some of the most gas-rich high redshift galaxies ever detected.
We present constraints on the dust continuum flux and inferred gas content of a gravitationally lensed massive quiescent galaxy at $z$=1.883$pm$0.001 using AzTEC 1.1mm imaging with the Large Millimeter Telescope. MRG-S0851 appears to be a prototypica
We present Early Science observations with the Large Millimeter Telescope, AzTEC 1.1 mm continuum images and wide bandwidth spectra (73-111 GHz) acquired with the Redshift Search Receiver, towards four bright lensed submillimetre galaxies identified
An understanding of the mass build-up in galaxies over time necessitates tracing the evolution of cold gas (molecular and atomic) in galaxies. To that end, we have conducted a pilot study called CO Observations with the LMT of the Blind Ultra-Deep H
Measuring redshifted CO line emission is an unambiguous method for obtaining an accurate redshift and total cold gas content of optically faint, dusty starburst systems. Here, we report the first successful spectroscopic redshift determination of AzT
We directly detect dust emission in an optically-detected, multiply-imaged galaxy lensed by the Frontier Fields cluster MACSJ0717.5+3745. We detect two images of the same galaxy at 1.1mm with the AzTEC camera on the Large Millimeter Telescope leaving