ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical and UV Spectra of the Remnant of SN 1885 (S And) in M31

97   0   0.0 ( 0 )
 نشر من قبل Robert Fesen
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present optical and ultraviolet spectra of SN 1885 (S And), visible in absorption against the bulge of the Andromeda galaxy (M31), using the Hubble Space Telescopes STIS spectrograph to probe the three dimensional arrangement of the supernova debris. Spectra covering 2900 to 5700 A taken using six 0.2 slit positions in two orientations show broad Ca II absorption with blue and red radial velocities out to at least 11,500 km/s, consistent with HST Ca II images of S And. Enhanced Ca II absorption is seen between 2000 to 6000 km/s suggestive of a Ca II-rich shell. The spectra also show strong, asymmetric Ca I 4227 A absorption extending out to +12,400 km/s, along with weak Fe I 3720 A absorption in a shell with velocities between 2000 and 9000 km/s. Ultraviolet spectra obtained revealed weak broad absorption shortward of 3000 A consistent with model predictions. The STIS spectra, together with previous HST images, show a layered structure with a well defined Ca-rich outer edge indicative of a delayed detonation phase. The remnants clumpy inner Ca-rich shell plus only a handful of Fe-rich plumes is unlike morphologies expected from dynamical or violent merger scenarios. The small number of Fe-rich plumes suggest their formation during a deflagration phase by Rayleigh-Taylor instabilities but less well developed without extended mixing as expected from hydrodynamic calculations. The suppression of strong Rayleigh-Taylor instabilities is possibly the result of strong magnetic fields. We propose SN 1885 was an off-center, delayed detonation and slightly subluminous SN Ia similar to SN 1986g.



قيم البحث

اقرأ أيضاً

On 2017 March 11, the DLT40 Transient Discovery Survey discovered SN 2017cbv in NGC5643, a Type 2 Seyfert Galaxy in the Lupus Constellation. SN 2017cbv went on to become a bright Type Ia supernova, with a $V_{max}$ of 11.51 $pm$ 0.05 mag. We present early time optical and infrared photometry of SN 2017cbv covering the rise and fall of over 68 days. We find that SN 2017cbv has a broad light curve $Delta m_{15}(B)$ = 0.88 $pm$ 0.07, a $B$-band maximum at 2457840.97 $pm$ 0.43, a negligible host galaxy reddening where $E(B-V)_{host}$ $approx$ 0, and a distance modulus of 30.49 $pm$ 0.32 to the SN, corresponding to a distance of $12.58_{-1.71}^{+1.98}$ Mpc. We also present the results of two different numerical models we used for analysis in this paper: SALT2, an empirical model for Type Ia supernova optical light curves that accounts for variability components; and SNooPy, the CSP-II light-curve model that covers both optical and near-infrared wavelengths and is used for distance estimates.
Using HST photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main sequence masses (MZAMS) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and use CMD fitting to measure the recent star formation history (SFH) of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star and assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the MZAMS from this age. Because our technique is not contingent on precise location of the progenitor star, it can be applied to the location of any known SNR. We identify significant young SF around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of 2 increase over currently measured progenitor masses. We consider the remaining 6 SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped their birth sites. The distribution of recovered progenitor masses is bottom heavy, showing a paucity of the most massive stars. If we assume a single power law distribution, dN/dM proportional to M^alpha, we find a distribution that is steeper than a Salpeter IMF (alpha=-2.35). In particular, we find values of alpha outside the range -2.7 to -4.4 inconsistent with our measured distribution at 95% confidence. If instead we assume a distribution that follows a Salpeter IMF up to some maximum mass, we find that values of M_max greater than 26 Msun are inconsistent with the measured distribution at 95% confidence. In either scenario, the data suggest that some fraction of massive stars may not explode. The result is preliminary and requires more SNRs and further analysis. In addition, we use our distribution to estimate a minimum mass for core collapse between 7.0 and 7.8 Msun.
121 - P.A. Mazzali 2015
A series of optical and one near-infrared nebular spectra covering the first year of the Type Ia supernova SN 2011fe are presented and modelled. The density profile that proved best for the early optical/ultraviolet spectra, rho-11fe, was extended to lower velocities to include the regions that emit at nebular epochs. Model rho-11fe is intermediate between the fast deflagration model W7 and a low-energy delayed-detonation. Good fits to the nebular spectra are obtained if the innermost ejecta are dominated by neutron-rich, stable Fe-group species, which contribute to cooling but not to heating. The correct thermal balance can thus be reached for the strongest [FeII] and [FeIII] lines to be reproduced with the observed ratio. The 56Ni mass thus obtained is 0.47 +/- 0.05 Mo. The bulk of 56Ni has an outermost velocity of ~8500 km/s. The mass of stable iron is 0.23 +/- 0.03 Mo. Stable Ni has low abundance, ~10^{-2} Mo. This is sufficient to reproduce an observed emission line near 7400 A. A sub-Chandrasekhar explosion model with mass 1.02 Mo and no central stable Fe does not reproduce the observed line ratios. A mock model where neutron-rich Fe-group species are located above 56Ni following recent suggestions is also shown to yield spectra that are less compatible with the observations. The densities and abundances in the inner layers obtained from the nebular analysis, combined with those of the outer layers previously obtained, are used to compute a synthetic bolometric light curve, which compares favourably with the light curve of SN 2011fe.
We present photometric and spectroscopic observations of Supernova 2020oi (SN 2020oi), a nearby ($sim$17 Mpc) type-Ic supernova (SN Ic) within the grand-design spiral M100. We undertake a comprehensive analysis to characterize the evolution of SN 202 0oi and constrain its progenitor system. We detect flux in excess of the fireball rise model $delta t approx 2.5$ days from the date of explosion in multi-band optical and UV photometry from the Las Cumbres Observatory and the Neil Gehrels Swift Observatory, respectively. The derived SN bolometric luminosity is consistent with an explosion with $M_{rm ej} = 0.81 pm 0.03 M_{odot}$, $E_{k}= 1.40 pm 0.19 times 10^{51} rm{erg} rm{s}^{-1}$, and $M_{rm Ni56} = 0.08 pm 0.02 M_{odot}$. Inspection of the events decline reveals the highest $Delta m_{15,rm{bol}}$ reported for a stripped-envelope event to date. Modeling of optical spectra near event peak indicates a partially mixed ejecta comparable in composition to the ejecta observed in SN 1994I, while the earliest spectrum shows signatures of a possible interaction with material of a distinct composition surrounding the SN progenitor. Further, Hubble Space Telescope (HST) pre-explosion imaging reveals a stellar cluster coincident with the event. From the cluster photometry, we derive the mass and age of the SN progenitor using stellar evolution models implemented in the BPASS library. Our results indicate that SN 2020oi occurred in a binary system from a progenitor of mass $M_{rm ZAMS} approx 9.5 pm 1.0 M_{odot}$, corresponding to an age of $27 pm 7$ Myr. SN 2020oi is the dimmest SN Ic event to date for which an early-time flux excess has been observed, and the first in which an early excess is unlikely to be associated with shock-cooling.
We present near infrared (NIR) spectroscopy of the nearby supernova 2014J obtained $sim$450 d after explosion. We detect the [Ni II] 1.939 $mu$m line in the spectra indicating the presence of stable $^{58}$Ni in the ejecta. The stable nickel is not c entrally concentrated but rather distributed as the iron. The spectra are dominated by forbidden [Fe II] and [Co II] lines. We use lines, in the NIR spectra, arising from the same upper energy levels to place constraints on the extinction from host galaxy dust. We find that that our data are in agreement with the high $A_V$ and low $R_V$ found in earlier studies from data near maximum light. Using a $^{56}$Ni mass prior from near maximum light $gamma$-ray observations, we find $sim$0.05 M$_odot$ of stable nickel to be present in the ejecta. We find that the iron group features are redshifted from the host galaxy rest frame by $sim$600 km s$^{-1}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا