ﻻ يوجد ملخص باللغة العربية
We investigate a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a superconducting transmission line resonator. Drawing on methods from circuit quantum electrodynamics and Hartmann-Hahn double resonance techniques, we analyze three specific approaches for implementing resonator-mediated two-qubit entangling gates in both dispersive and resonant regimes of interaction. We calculate entangling gate fidelities as well as the rate of relaxation via phonons for resonant exchange qubits in silicon triple dots and show that such an implementation is particularly well-suited to achieving the strong coupling regime. Our approach combines the favorable coherence properties of encoded spin qubits in silicon with the rapid and robust long-range entanglement provided by circuit QED systems.
The scalability of quantum networks based on solid-state spin qubits is hampered by the short range of natural spin-spin interactions. Here, we propose a scheme to entangle distant spin qubits via the soft modes of an antiferromagnetic domain wall (D
Triple quantum dots (TQDs) are promising semiconductor spin qubits because of their all-electrical control via fast, tunable exchange interactions and immunity to global magnetic fluctuations. These qubits can experience strong transverse interaction
Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly
Resonant exchange qubits are a promising addition to the family of experimentally implemented encodings of single qubits using semiconductor quantum dots. We have shown previously that it ought to be straightforward to perform a CPHASE gate between t
The Heisenberg exchange interaction between neighboring quantum dots allows precise voltage control over spin dynamics, due to the ability to precisely control the overlap of orbital wavefunctions by gate electrodes. This allows the study of fundamen