ﻻ يوجد ملخص باللغة العربية
A thin single-element THGEM-based, Resistive-Plate WELL (RPWELL) detector was operated with 150 GeV/c muon and pion beams in Ne/(5%CH$_4$), Ar/(5%CH$_4$) and Ar/(7%CO$_2$); signals were recorded with 1 cm$^2$ square pads and SRS/APV25 electronics. Detection efficiency values greater than 98% were reached in all the gas mixtures, at average pad multiplicity of 1.2. The use of the 10$^9${Omega}cm resistive plate resulted in a completely discharge-free operation also in intense pion beams. The efficiency remained essentially constant at 98-99% up to fluxes of $sim$10$^4$Hz/cm$^2$, dropping by a few % when approaching 10$^5$ Hz/cm$^2$. These results pave the way towards cost-effective, robust, efficient, large-scale detectors for a variety of applications in future particle, astro-particle and applied fields. A potential target application is digital hadron calorimetry.
In-beam evaluation of a fully-equipped medium-size 30$times$30 cm$^2$ Resistive Plate WELL (RPWELL) detector is presented. It consists here of a single element gas-avalanche multiplier with Semitron ESD225 resistive plate, 1 cm$^2$ readout pads and A
Digital and Semi-Digital Hadronic Calorimeters (S)DHCAL were suggested for future Colliders as part of the particle-flow concept. Though studied mostly with RPC-based techniques, investigations have shown that MPGD-based sampling elements could outpe
We present for the first time, discharge-free operation at cryogenic conditions of a Resistive-Plate WELL (RPWELL) detector. It is a single-sided Thick Gaseous Electron Multiplier (THGEM) coupled to a readout anode via a plate of high bulk resistivit
The muon identification system of the ALICE experiment at the CERN LHC is based on Resistive Plate Chamber (RPC) detectors. These RPCs are operated in the so-called maxi-avalanche mode with a gas mixture made of tetrafluoroethane (C$_{2}$H$_{2}$F$_{4
The Resistive Plate Chamber (RPC) muon subsystem contributes significantly to the formation of the trigger decision and reconstruction of the muon trajectory parameters. Simulation of the RPC response is a crucial part of the entire CMS Monte Carlo s