ﻻ يوجد ملخص باللغة العربية
The concept of symmetry breaking has been a propelling force in understanding phases of matter. While rotational symmetry breaking is one of the most prevalent examples, the rich landscape of orientational orders breaking the rotational symmetries of isotropic space, i.e. $O(3)$, to a three-dimensional point group remain largely unexplored, apart from simple examples such as ferromagnetic or uniaxial nematic ordering. Here we provide an explicit construction, utilizing a recently introduced gauge theoretical framework, to address the three-dimensional point-group-symmetric orientational orders on a general footing. This unified approach allows us to enlist order parameter tensors for all three dimensional point groups. By construction, these tensor order parameters are the minimal set of simplest tensors allowed by the symmetries that uniquely characterize the orientational order. We explicitly give these for the point groups ${C_n, D_n, T, O, I} subset SO(3)$ and ${C_{nv}, S_n, C_{nh}, D_{nh}, D_{nd}, T_h, T_d, O_h, I_h}subset O(3)$ for $n={1,2,3,4,6, infty}$. This central result may be perceived as a roadmap for identifying exotic orientational orders that may become more and more in reach in view of rapid experimental progress in e.g. nano-colloidal systems and novel magnets.
Using scaled-particle theory for binary mixtures of two-dimensional hard particles with rotational freedom, we analyse the stability of nematic phases and the demixing phase behaviour of a variety of mixtures, focussing on cases where at least one of
Dense assemblies of self propelled particles, also known as active or living glasses are abundantaround us, covering different length and time scales: from the cytoplasm to tissues, from bacterialbio-films to vehicular traffic jams, from Janus colloi
We introduce the spatial correlation function $C_Q(r)$ and temporal autocorrelation function $C_Q(t)$ of the local tetrahedral order parameter $Qequiv Q(r,t)$. Using computer simulations of the TIP5P model of water, we investigate $C_Q(r)$ in a broad
Motivated by the structure of networks of cross-linked cytoskeletal biopolymers, we study the orientationally ordered phases in two-dimensional networks of randomly cross-linked semiflexible polymers. We consider permanent cross-links which prescribe
The combinations of particle aspect ratio and enthalpic-barrier templates that lead to translational and orientational ordering of monolayers of rectangular particles are determined using Monte Carlo simulations and density functional theory. For suf