ﻻ يوجد ملخص باللغة العربية
Social media sites are information marketplaces, where users produce and consume a wide variety of information and ideas. In these sites, users typically choose their information sources, which in turn determine what specific information they receive, how much information they receive and how quickly this information is shown to them. In this context, a natural question that arises is how efficient are social media users at selecting their information sources. In this work, we propose a computational framework to quantify users efficiency at selecting information sources. Our framework is based on the assumption that the goal of users is to acquire a set of unique pieces of information. To quantify users efficiency, we ask if the user could have acquired the same pieces of information from another set of sources more efficiently. We define three different notions of efficiency -- link, in-flow, and delay -- corresponding to the number of sources the user follows, the amount of (redundant) information she acquires and the delay with which she receives the information. Our definitions of efficiency are general and applicable to any social media system with an underlying information network, in which every user follows others to receive the information they produce. In our experiments, we measure the efficiency of Twitter users at acquiring different types of information. We find that Twitter users exhibit sub-optimal efficiency across the three notions of efficiency, although they tend to be more efficient at acquiring non-popular than popular pieces of information. We then show that this lack of efficiency is a consequence of the triadic closure mechanism by which users typically discover and follow other users in social media. Finally, we develop a heuristic algorithm that enables users to be significantly more efficient at acquiring the same unique pieces of information.
A number of recent studies of information diffusion in social media, both empirical and theoretical, have been inspired by viral propagation models derived from epidemiology. These studies model the propagation of memes, i.e., pieces of information,
While social interactions are critical to understanding consumer behavior, the relationship between social and commerce networks has not been explored on a large scale. We analyze Taobao, a Chinese consumer marketplace that is the worlds largest e-co
There has been a tremendous rise in the growth of online social networks all over the world in recent years. It has facilitated users to generate a large amount of real-time content at an incessant rate, all competing with each other to attract enoug
Social networks readily transmit information, albeit with less than perfect fidelity. We present a large-scale measurement of this imperfect information copying mechanism by examining the dissemination and evolution of thousands of memes, collectivel
Social network research has begun to take advantage of fine-grained communications regarding coordination, decision-making, and knowledge sharing. These studies, however, have not generally analyzed how external events are associated with a social ne