ﻻ يوجد ملخص باللغة العربية
Due to their steep spectra, low-frequency observations of FR II radio galaxies potentially provide key insights in to the morphology, energetics and spectrum of these powerful radio sources. However, limitations imposed by the previous generation of radio interferometers at metre wavelengths has meant that this region of parameter space remains largely unexplored. In this paper, the first in a series examining FR IIs at low frequencies, we use LOFAR observations between 50 and 160 MHz, along with complementary archival radio and X-ray data, to explore the properties of two FR II sources, 3C452 and 3C223. We find that the morphology of 3C452 is that of a standard FR II rather than of a double-double radio galaxy as had previously been suggested, with no remnant emission being observed beyond the active lobes. We find that the low-frequency integrated spectra of both sources are much steeper than expected based on traditional assumptions and, using synchrotron/inverse-Compton model fitting, show that the total energy content of the lobes is greater than previous estimates by a factor of around 5 for 3C452 and 2 for 3C223. We go on to discuss possible causes of these steeper than expected spectra and provide revised estimates of the internal pressures and magnetic field strengths for the intrinsically steep case. We find that the ratio between the equipartition magnetic field strengths and those derived through synchrotron/inverse-Compton model fitting remains consistent with previous findings and show that the observed departure from equipartition may in some cases provide a solution to the spectral versus dynamical age disparity.
In this paper, the second in a series investigating FR II radio galaxies at low frequencies, we use LOFAR and VLA observations between 117 and 456 MHz in addition to archival data to determine the dynamics and energetics of two radio galaxies, 3C452
We present high-quality VLA images of the FR I radio galaxy 3C 31 in the frequency range 1365 to 8440 MHz with angular resolutions from 0.25 to 40 arcsec. Our new images reveal complex, well resolved filamentary substructure in the radio jets and tai
A tight far-infrared - radio correlation similar to that in star-forming late-type galaxies is also indicated in star-forming blue early-type galaxies, in which the nuclear optical-line emissions are primarily due to star-forming activities without a
We present a sample of 1,483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky su
Spectral variability of radio sources encodes information about the conditions of intervening media, source structure, and emission processes. With new low-frequency radio interferometers observing over wide fractional bandwidths, studies of spectral