ترغب بنشر مسار تعليمي؟ اضغط هنا

Separating hyperfine from spin-orbit interactions in organic semiconductors by multi-octave magnetic resonance using coplanar waveguide microresonators

73   0   0.0 ( 0 )
 نشر من قبل Gajadhar Joshi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Separating the influence of hyperfine from spin-orbit interactions in spin-dependent carrier recombination and dissociation processes necessitates magnetic resonance spectroscopy over a wide range of frequencies. We have designed compact and versatile coplanar waveguide resonators for continuous-wave electrically detected magnetic resonance, and tested these on organic light-emitting diodes. By exploiting both the fundamental and higher-harmonic modes of the resonators we cover almost five octaves in resonance frequency within a single setup. The measurements with a common pi-conjugated polymer as the active material reveal small but non-negligible effects of spin-orbit interactions, which give rise to a broadening of the magnetic resonance spectrum with increasing frequency.

قيم البحث

اقرأ أيضاً

In this work, we demonstrate the use of frequency-tunable superconducting NbTiN coplanar waveguide microresonators for multi-frequency pulsed electron spin resonance (ESR) experiments. By applying a bias current to the center pin, the resonance frequ ency ($sim$7.6 GHz) can be continuously tuned by as much as 95 MHz in 270 ns without a change in the quality factor of 3000 at 2K. We demonstrate the ESR performance of our resonators by measuring donor spin ensembles in silicon and show that adiabatic pulses can be used to overcome magnetic field inhomogeneities and microwave power limitations due to the applied bias current. We take advantage of the rapid tunability of these resonators to manipulate both phosphorus and arsenic spins in a single pulse sequence, demonstrating pulsed double electron-electron resonance (DEER). Our NbTiN resonator design is useful for multi-frequency pulsed ESR and should also have applications in experiments where spin ensembles are used as quantum memories.
We explore the possibility that hyperfine interaction causes the recently discovered organic magnetoresistance (OMAR) effect. Our study employs both experiment and theoretical modelling. An excitonic pair mechanism model based on hyperfine interactio n, previously suggested by others to explain magnetic field effects in organics, is examined. Whereas this model can explain a few key aspects of the experimental data, we, however, uncover several fundamental contradictions as well. By varying the injection efficiency for minority carriers in the devices, we show experimentally that OMAR is only weakly dependent on the ratio between excitons formed and carriers injected, likely excluding any excitonic effect as the origin of OMAR.
We discuss the design and implementation of thin film superconducting coplanar waveguide micro- resonators for pulsed ESR experiments. The performance of the resonators with P doped Si epilayer samples is compared to waveguide resonators under equiva lent conditions. The high achievable filling factor even for small sized samples and the relatively high Q-factor result in a sensitivity that is superior to that of conventional waveguide resonators, in particular to spins close to the sample surface. The peak microwave power is on the order of a few microwatts, which is compatible with measurements at ultra low temperatures. We also discuss the effect of the nonuniform microwave magnetic field on the Hahn echo power dependence.
99 - Yao Yao 2019
Different from traditional semiconductors, the organic semiconductors normally possess moderate many-body interactions with respect to charge, exciton, spin and phonons. In particular, the diagonal electron-phonon couplings give rise to the spatial l ocalization and the off-diagonal couplings refer to the delocalization. With the competition between them, the electrons are dispersive in a finite extent and unfavorable towards thermal equilibrium. In this context, the quantities from the statistical mechanics such as the entropy have to be reexamined. In order to bridge the localization-delocalization duality and the device performance in organic semiconductors, the quantum heat engine model is employed to describe the charge, exciton and spin dynamics. We adopt the adaptive time-dependent density matrix renormalization group algorithm to calculate the time evolution of the out-of-time-ordered correlator (OTOC), a quantum dynamic measurement of the entanglement entropy, in three models with two kinds of competing many-body interactions: two-bath lattice model with a single electron, Frenkel-charge transfer mixed model, and the Merrifield model for singlet fission. We respectively investigate the parameter regime that the system is in the many-body localization (MBL) phase indicated by the behavior of OTOC. It is recognized that the novel effects of coherent electron hopping, the ultrafast charge separation and the dissociation of triplet pairs are closely related to the MBL effect. Our investigation unifies the intrinsic mechanisms correlating to charge, exciton and spin into a single framework of quantum entanglement entropy, which may help clarify the complicated and diverse phenomena in organic semiconductors.
We measure spin-orbit torques (SOTs) in a unique model system of all-epitaxial ferrite/Pt bilayers to gain insights into charge-spin interconversion in Pt. With negligible electronic conduction in the insulating ferrite, the crystalline Pt film acts as the sole source of charge-to-spin conversion. A small field-like SOT independent of Pt thickness suggests a weak Rashba-Edelstein effect at the ferrite/Pt interface. By contrast, we observe a sizable damping-like SOT that depends on the Pt thickness, from which we deduce the dominance of an extrinsic spin-Hall effect (skew scattering) and Dyakonov-Perel spin relaxation in the crystalline Pt film. Furthermore, our results point to a large internal spin-Hall ratio of $approx$0.8 in epitaxial Pt. Our experimental work takes an essential step towards understanding the mechanisms of charge-spin interconversion and SOTs in Pt-based heterostructures, which are crucial for power-efficient spintronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا