ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of contact lines in fluids: 2D Stokes Flow

69   0   0.0 ( 0 )
 نشر من قبل Ian Tice
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In an effort to study the stability of contact lines in fluids, we consider the dynamics of an incompressible viscous Stokes fluid evolving in a two-dimensional open-top vessel under the influence of gravity. This is a free boundary problem: the interface between the fluid in the vessel and the air above (modeled by a trivial fluid) is free to move and experiences capillary forces. The three-phase interface where the fluid, air, and solid vessel wall meet is known as a contact point, and the angle formed between the free interface and the vessel is called the contact angle. We consider a model of this problem that allows for fully dynamic contact points and angles. We develop a scheme of a priori estimates for the model, which then allow us to show that for initial data sufficiently close to equilibrium, the model admits global solutions that decay to equilibrium exponentially fast.

قيم البحث

اقرأ أيضاً

134 - Yan Guo , Ian Tice 2020
In this paper we study the dynamics of an incompressible viscous fluid evolving in an open-top container in two dimensions. The fluid mechanics are dictated by the Navier-Stokes equations. The upper boundary of the fluid is free and evolves within th e container. The fluid is acted upon by a uniform gravitational field, and capillary forces are accounted for along the free boundary. The triple-phase interfaces where the fluid, air above the vessel, and solid vessel wall come in contact are called contact points, and the angles formed at the contact point are called contact angles. The model that we consider integrates boundary conditions that allow for full motion of the contact points and angles. Equilibrium configurations consist of quiescent fluid within a domain whose upper boundary is given as the graph of a function minimizing a gravity-capillary energy functional, subject to a fixed mass constraint. The equilibrium contact angles can take on any values between $0$ and $pi$ depending on the choice of capillary parameters. The main thrust of the paper is the development of a scheme of a priori estimates that show that solutions emanating from data sufficiently close to the equilibrium exist globally in time and decay to equilibrium at an exponential rate.
Geometric structures naturally appear in fluid motions. One of the best known examples is Saturns Hexagon, the huge cloud pattern at the level of Saturns north pole, remarkable both for the regularity of its shape and its stability during the past de cades. In this paper we will address the spontaneous formation of hexagonal structures in planar viscous flows, in the classical setting of Lerays solutions of the Navier-Stokes equations. Our analysis also makes evidence of the isotropic character of the energy density of the fluid for sufficently localized 2D flows in the far field: it implies, in particular, that fluid particles of such flows are nowhere at rest at large distances.
We study the 2D Navier-Stokes equations linearized around the Couette flow $(y,0)^t$ in the periodic channel $mathbb T times [-1,1]$ with no-slip boundary conditions in the vanishing viscosity $ u to 0$ limit. We split the vorticity evolution into th e free evolution (without a boundary) and a boundary corrector that is exponentially localized to at most an $O( u^{1/3})$ boundary layer. If the initial vorticity perturbation is supported away from the boundary, we show inviscid damping of both the velocity and the vorticity associated to the boundary layer. For example, our $L^2_t L^1_y$ estimate of the boundary layer vorticity is independent of $ u$, provided the initial data is $H^1$. For $L^2$ data, the loss is only logarithmic in $ u$. Note both such estimates are false for the vorticity in the interior. To the authors knowledge, this inviscid decay of the boundary layer vorticity seems to be a new observation not previously isolated in the literature. Both velocity and vorticity satisfy the expected $O(exp(-delta u^{1/3}alpha^{2/3}t))$ enhanced dissipation in addition to the inviscid damping. Similar, but slightly weaker, results are obtained also for $H^1$ data that is against the boundary initially. For $L^2$ data against the boundary, we at least obtain the boundary layer localization and enhanced dissipation.
A hyperbolic relaxation of the classical Navier-Stokes problem in 2D bounded domain with Dirichlet boundary conditions is considered. It is proved that this relaxed problem possesses a global strong solution if the relaxation parameter is small and t he appropriate norm of the initial data is not very large. Moreover, the dissipativity of such solutions is established and the singular limit as the relaxation parameter tends to zero is studied
97 - Gong Chen , Qingtang Su 2020
The well-known Stokes waves refer to periodic traveling waves under the gravity at the free surface of a two dimensional full water wave system. In this paper, we prove that small-amplitude Stokes waves with infinite depth are nonlinearly unstable un der long-wave perturbations. Our approach is based on the modulational approximation of the water wave system and the instability mechanism of the focusing cubic nonlinear Schrodinger equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا