ترغب بنشر مسار تعليمي؟ اضغط هنا

Interference Effect of Majorana Fermions in a Spin-orbit Coupled Superconducting Wire

92   0   0.0 ( 0 )
 نشر من قبل Jie Liu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two majorana Fermions (MFs) localized at the two ends of the topological superconducting wire can interfere with each other and form the well known $4pi$ Josephson current. We reveal that the density of states (Dos) for the electron part and the hole part also follow a parity correlated $4pi$ period oscillation, while the Dos displays a $2pi$ period oscillation when two trivial states interfere with each other. Thus, the period of Dos oscillation can be used to distinguish the MFs from the trivial localized states. Interestingly, such phenomena can be directly observed in a short superconducting wire controlled by the gate voltage. This largely simplifies the experimental setup. We suggest that the interference effects can be detected through two STM leads or two norm leads.


قيم البحث

اقرأ أيضاً

Majorana fermion (MF) excitations in solid state system have non-Abelian statistics which is essential for topological quantum computation. Previous proposals to realize MF, however, generally requires fine-tuning of parameters. Here we explore a pla tform which avoids the fine-tuning problem, namely a ferromagnetic chain deposited on the surface of a spin-orbit coupled $s$-wave superconductor. We show that it generically supports zero-energy topological MF excitations near the two ends of the chain with minimal fine-tuning. Depending on the strength of the ferromagnetic moment in the chain, the number of MFs at each end, $n$, can be either one or two, and should be revealed by a robust zero-bias peak (ZBP) of height $2ne^2/h$ in scanning tunneling microscopy (STM) measurements which would show strong (weak) signals at the ends (middle) of the chain. The role of an approximate chiral symmetry which gives an integer topological invariant to the system is discussed.
172 - Xia-Ji Liu , P. D. Drummond 2013
Majorana fermions are promising candidates for storing and processing information in topological quantum computation. The ability to control such individual information carriers in trapped ultracold atomic Fermi gases is a novel theme in quantum info rmation science. However, fermionic atoms are neutral and thus are difficult to manipulate. Here, we theoretically investigate the control of emergent Majorana fermions in one-dimensional spin-orbit coupled atomic Fermi gases. We discuss (i) how to move Majorana fermions by increasing or decreasing an effective Zeeman field, which acts like a solid state control voltage gate; and (ii) how to create a pair of Majorana fermions by adding a magnetic impurity potential. We discuss the experimental realization of our control scheme in an ultracold Fermi gas of $^{40}$K atoms.
The excitation gap above the Majorana fermion (MF) modes at the ends of 1D topological superconducting (TS) semiconductor wires scales with the bulk quasiparticle gap E_{qp}. This gap, also called minigap, facilitates experimental detection of the pr istine TS state and MFs at experimentally accessible temperatures T << E_{qp}. Here we show that the linear scaling of minigap with E_{qp} can fail in quasi-1D wires with multiple confinement bands when the applied Zeeman field is greater than or equal to about half of the confinement-induced bandgap. TS states in such wires have an approximate chiral symmetry supporting multiple near zero energy modes at each end leading to a minigap which can effectively vanish. We show that the problem of small minigap in such wires can be resolved by forcing the system to break the approximate chirality symmetry externally with a second Zeeman field. Although experimental signatures such as zero bias peak from the wire ends is suppressed by the second Zeeman field above a critical value, such a field is required in some important parameter regimes of quasi-1D wires to isolate the topological physics of end state MFs. We also discuss the crucial difference of our minigap calculations from the previously reported minigap results appropriate for idealized spinless p-wave superconductors and explain why the clustering of fermionic subgap states around the zero energy Majorana end state with increasing chemical potential seen in the latter system does not apply to the experimental TS states in spin-orbit coupled nanowires.
Tunneling experiment is a key technique for detecting Majorana fermion in solid state systems. We use Keldysh non-equilibrium Green function method to study multi-lead tunneling in superconducting nanowire with Rashba and Dresselhaus spin-orbit coupl ings. A zero-bias textit{dc} conductance peak appears in our setup which signifies the existence of Majorana fermion and is in accordance with previous experimental results on InSb nanowire. Interestingly, due to the exotic property of Majorana fermion, there exists a hole transmission channel which makes the currents asymmetric at the left and right leads. The textit{ac} current response mediated by Majorana fermion is also studied here. To discuss the impacts of Coulomb interaction and disorder on the transport property of Majorana nanowire, we use the renormalization group method to study the phase diagram of the wire. It is found that there is a topological phase transition under the interplay of superconductivity and disorder. We find that the Majorana transport is preserved in the superconducting-dominated topological phase and destroyed in the disorder-dominated non-topological insulator phase.
Motivated by recent experiments demonstrating intricate quantum Hall physics on the surface of elemental bismuth, we consider proximity coupling an $s$-wave superconductor to a two-dimensional electron gas with strong Rashba spin-orbit interactions i n the presence of a strong perpendicular magnetic field. We focus on the high-field limit so that the superconductivity can be treated as a perturbation to the low-lying Landau levels. In the clean case, wherein the superconducting order parameter takes the form of an Abrikosov vortex lattice, we show that a lattice of hybridized Majorana modes emerges near the plateau transition of the lowest Landau level. However, unless magnetic-symmetry-violating perturbations are present, the system always has an even number of chiral Majorana edge modes and thus is strictly speaking Abelian in nature, in agreement with previous work on related setups. Interestingly, however, a weak topological superconducting phase can very naturally be stabilized near the plateau transition for the square vortex lattice. The relevance of our findings to potential near-term experiments on proximitized materials such as bismuth will be discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا