ترغب بنشر مسار تعليمي؟ اضغط هنا

Magneto-intersubband resistance oscillations in GaAs quantum wells placed in a tilted magnetic field

148   0   0.0 ( 0 )
 نشر من قبل Sergey Vitkalov
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetotransport of highly mobile 2D electrons in wide GaAs single quantum wells with three populated subbands placed in titled magnetic fields is studied. The bottoms of the lower two subbands have nearly the same energy while the bottom of the third subband has a much higher energy ($E_1approx E_2<<E_3$). At zero in-plane magnetic fields magneto-intersubband oscillations (MISO) between the $i^{th}$ and $j^{th}$ subbands are observed and obey the relation $Delta_{ij}=E_j-E_i=kcdothbaromega_c$, where $omega_c$ is the cyclotron frequency and $k$ is an integer. An application of in-plane magnetic field produces dramatic changes in MISO and the corresponding electron spectrum. Three regimes are identified. At $hbaromega_c ll Delta_{12}$ the in-plane magnetic field increases considerably the gap $Delta_{12}$, which is consistent with the semi-classical regime of electron propagation. In contrast at strong magnetic fields $hbaromega_c gg Delta_{12}$ relatively weak oscillating variations of the electron spectrum with the in-plane magnetic field are observed. At $hbaromega_c approx Delta_{12}$ the electron spectrum undergoes a transition between these two regimes through magnetic breakdown. In this transition regime MISO with odd quantum number $k$ terminate, while MISO corresponding to even $k$ evolve $continuously$ into the high field regime corresponding to $hbaromega_c gg Delta_{12}$

قيم البحث

اقرأ أيضاً

225 - Sara Abedi 2021
Magneto-intersubband resistance oscillations (MISO) of highly mobile 2D electrons in symmetric GaAs quantum wells with two populated subbands are studied in magnetic fields tilted from the normal to the 2D electron layer at different temperatures $T$ . Decrease of MISO amplitude with temperature increase is observed. At moderate tilts the temperature decrease of MISO amplitude is consistent with decrease of Dingle factor due to reduction of quantum electron lifetime at high temperatures. At large tilts new regime of strong MISO suppression with the temperature is observed. Proposed model relates this suppression to magnetic entanglement between subbands, leading to beating in oscillating density of states. The model yields corresponding temperature damping factor: $A_{MISO}(T)=X/sinh(X)$, where $X=2pi^2kTdelta f$ and $delta f$ is difference frequency of oscillations of density of states in two subbands. This factor is in agreement with experiment. Fermi liquid enhancement of MISO amplitude is observed.
Oscillations of the real component of AC conductivity $sigma_1$ in a magnetic field were measured in the n-AlGaAs/GaAs structure with a wide (75 nm) quantum well by contactless acoustic methods at $T$=(20-500)~mK. In a wide quantum well, the electron ic band structure is associated with the two-subband electron spectrum, namely the symmetric (S) and antisymmetric (AS) subbands formed due to electrostatic repulsion of electrons. A change of the oscillations amplitude in tilted magnetic field observed in the experiments occurs due to crossings of Landau levels of different subbands (S and AS) at the Fermi level. The theory developed in this work shows that these crossings are caused by the difference in the cyclotron energies in the S and AS subbands induced by the in-plane magnetic field.
Slow magnetooscilations of the conductivity are observed in a 75 nm wide quantum well at heating of the two-dimensional electrons by a high-intensity surface acoustic wave. These magnetooscillations are caused by intersubband elastic scattering betwe en the symmetric and asymmetric subbands formed due to an electrostatic barrier in the center of the quantum well. The tunneling splitting between these subbands as well as the intersubband scattering rate are determined.
We report on Hall field-induced resistance oscillations (HIRO) in a 60 nm-wide GaAs/AlGaAs quantum well with an emph{in situ} grown back gate, which allows tuning the carrier density $n$. At low $n$, when all electrons are confined to the lowest subb and (SB1), the HIRO frequency, proportional to the product of the cyclotron diameter and the Hall field, scales with $n^{-1/2}$, as expected. Remarkably, population of the second subband (SB2) significantly enhances HIRO, while their frequency now scales as $n^{-1}$. We demonstrate that in this two-subband regime HIRO still originate solely from backscattering of SB1 electrons. The unusual density dependence occurs because the population of SB2 steadily increases, while that of SB1 remains essentially unchanged. The enhancement of HIRO manifests an unexpected, step-like increase of the quantum lifetime of SB1 electrons, which reaches a record value of 52 ps in the two-subband regime.
We report on microwave-induced resistance oscillations (MIROs) in a tunable-density 30-nm-wide GaAs/AlGaAs quantum well. We find that the MIRO amplitude increases dramatically with carrier density. Our analysis shows that the anticipated increase in the effective microwave power and quantum lifetime with density is not sufficient to explain the observed growth of the amplitude. We further observe that the fundamental oscillation extrema move towards cyclotron resonance with increasing density, which also contradicts theoretical predictions. These findings reveal that the density dependence is not properly captured by existing theories, calling for further studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا