We theoretically study dilute superfluidity of spin-1 bosons with antiferromagnetic interactions and synthetic spin-orbit coupling (SOC) in a one-dimensional lattice. Employing a combination of density matrix renormalization group and quantum field t
heoretical techniques we demonstrate the appearance of a robust superfluid spin-liquid phase in which the spin-sector of this spinor Bose-Einstein condensate remains quantum disordered even after introducing quadratic Zeeman and helical magnetic fields. Despite remaining disordered, the presence of these symmetry breaking fields lifts the perfect spin-charge separation and thus the nematic correlators obey power-law behavior. We demonstrate that, at strong coupling, the SOC induces a charge density wave state that is not accessible in the presence of linear and quadratic Zeeman fields alone. In addition, the SOC induces oscillations in the spin and nematic expectation values as well as the bosonic Greens function. These non-trivial effects of a SOC are suppressed under the application of a large quadratic Zeeman field. We discuss how our results could be observed in experiments on ultracold gases of $^{23}$Na in an optical lattice.
We develop a theory for light propagating in an atomic Bose-Einstein condensate in the presence of strong interactions. The resulting many-body correlations are shown to have profound effects on the optical properties of this interacting medium. For
weak atom-light coupling, there is a well-defined quasiparticle, the polaron-polariton, supporting light propagation with spectral features differing significantly from the noninteracting case. The damping of the polaron-polariton depends nonmonotonically on the light-matter coupling strength, initially increasing and then decreasing. This gives rise to an interesting crossover between two quasiparticles: a bare polariton and a polaron-polariton, separated by a complex and lossy mixture of light and matter.
To explore the static properties of the one-dimensional anyon-Hubbard model for a mean density of one particle per site, we apply perturbation theory with respect to the ratio between kinetic energy and interaction energy in the Mott insulating phase
. The strong-coupling results for the ground-state energy, the single-particle excitation energies, and the momentum distribution functions up to 6th order in hopping are benchmarked against the numerically exact (infinite) density-matrix renormalization group technique. Since these analytic expressions are valid for any fractional phase $theta$ of anyons, they will be of great value for a sufficiently reliable analysis of future experiments, avoiding extensive and costly numerical simulations.
We study the spin-Seebeck effect in a strongly interacting, two-component Fermi gas and propose an experiment to measure this effect by relatively displacing spin up and spin down atomic clouds in a trap using spin-dependent temperature gradients. We
compute the spin-Seebeck coefficient and related spin-heat transport coefficients as functions of temperature and interaction strength. We find that when the inter-spin scattering length becomes larger than the Fermi wavelength, the spin-Seebeck coefficient changes sign as a function of temperature, and hence so does the direction of the spin-separation. We compute this zero-crossing temperature as a function of interaction strength and in particular in the unitary limit for the inter-spin scattering.
We study the dynamics in a one dimensional hard-core Bose gas with power-law hopping after an abrupt reduction of the hopping range using the time-dependent density-matrix renormalization group (t-DMRG) and bosonization techniques. In particular, we
focus on the destruction of the Bose-Einstein condensate (BEC), which is present in the initial state in the thermodynamic limit. We argue that this type of quench is akin to a sudden reduction in the effective dimensionality $d$ of the system (from $d > 1$ to $d = 1$). We identify two regimes in the evolution of the BEC fraction. For short times the decay of the BEC fraction is Gaussian while for intermediate to long times, it is well described by a stretched exponential with an exponent that depends on the initial effective dimensionality of the system. These results are potentially relevant for cold trapped-ion experiments which can simulate an equivalent of hard-core bosons, i.e. spins, with tunable long-range interactions.
N. J. S. Loft
,L. B. Kristensen
,A. E. Thomsen
.
(2016)
.
"CONAN -- the cruncher of local exchange coefficients for strongly interacting confined systems in one dimension"
.
Nikolaj Thomas Zinner
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا