ترغب بنشر مسار تعليمي؟ اضغط هنا

Pliability, or the whitney extension theorem for curves in carnot groups

126   0   0.0 ( 0 )
 نشر من قبل Mario Sigalotti
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Nicolas Juillet




اسأل ChatGPT حول البحث

The Whitney extension theorem is a classical result in analysis giving a necessary and sufficient condition for a function defined on a closed set to be extendable to the whole space with a given class of regularity. It has been adapted to several settings, among which the one of Carnot groups. However, the target space has generally been assumed to be equal to R^d for some d $ge$ 1. We focus here on the extendability problem for general ordered pairs (G_1,G_2) (with G_2 non-Abelian). We analyze in particular the case G_1 = R and characterize the groups G_2 for which the Whitney extension property holds, in terms of a newly introduced notion that we call pliability. Pliability happens to be related to rigidity as defined by Bryant an Hsu. We exploit this relation in order to provide examples of non-pliable Carnot groups, that is, Carnot groups so that the Whitney extension property does not hold. We use geometric control theory results on the accessibility of control affine systems in order to test the pliability of a Carnot group. In particular, we recover some recent results by Le Donne, Speight and Zimmermann about Lusin approximation in Carnot groups of step 2 and Whitney extension in Heisenberg groups. We extend such results to all pliable Carnot groups, and we show that the latter may be of arbitrarily large step.



قيم البحث

اقرأ أيضاً

In this article we study the validity of the Whitney $C^1$ extension property for horizontal curves in sub-Riemannian manifolds endowed with 1-jets that satisfy a first-order Taylor expansion compatibility condition. We first consider the equiregular case, where we show that the extension property holds true whenever a suitable non-singularity property holds for the input-output maps on the Carnot groups obtained by nilpotent approximation. We then discuss the case of sub-Riemannian manifolds with singular points and we show that all step-2 manifolds satisfy the $C^1$ extension property. We conclude by showing that the $C^1$ extension property implies a Lusin-like approximation theorem for horizontal curves on sub-Riemannian manifolds.
In this paper, we construct Holder maps to Carnot groups equipped with a Carnot metric, especially the first Heisenberg group $mathbb{H}$. Pansu and Gromov observed that any surface embedded in $mathbb{H}$ has Hausdorff dimension at least 3, so there is no $alpha$-Holder embedding of a surface into $mathbb{H}$ when $alpha>frac{2}{3}$. Zust improved this result to show that when $alpha>frac{2}{3}$, any $alpha$-Holder map from a simply-connected Riemannian manifold to $mathbb{H}$ factors through a metric tree. In the present paper, we show that Zusts result is sharp by constructing $(frac{2}{3}-epsilon)$-Holder maps from $D^2$ and $D^3$ to $mathbb{H}$ that do not factor through a tree. We use these to show that if $0<alpha < frac{2}{3}$, then the set of $alpha$-Holder maps from a compact metric space to $mathbb{H}$ is dense in the set of continuous maps and to construct proper degree-1 maps from $mathbb{R}^3$ to $mathbb{H}$ with Holder exponents arbitrarily close to $frac{2}{3}$.
We continue to develop a program in geometric measure theory that seeks to identify how measures in a space interact with canonical families of sets in the space. In particular, extending a theorem of the first author and R. Schul in Euclidean space, for an arbitrary locally finite Borel measure in an arbitrary Carnot group, we develop tests that identify the part of the measure that is carried by rectifiable curves and the part of the measure that is singular to rectifiable curves. Our main result is entwined with an extension of the Analysts Traveling Salesman Theorem, which characterizes subsets of rectifiable curves in $mathbb{R}^2$ (P. Jones, 1990), in $mathbb{R}^n$ (K. Okikolu, 1992), or in an arbitrary Carnot group (the second author) in terms of local geometric least squares data called Jones $beta$-numbers. In a secondary result, we implement the Garnett-Killip-Schul construction of a doubling measure in $mathbb{R}^n$ that charges a rectifiable curve in an arbitrary complete, quasiconvex, doubling metric space.
In this paper we introduce the notion of horizontally affine, h-affine in short, function and give a complete description of such functions on step-2 Carnot algebras. We show that the vector space of h-affine functions on the free step-2 rank-$n$ Car not algebra is isomorphic to the exterior algebra of $mathbb{R}^n$. Using that every Carnot algebra can be written as a quotient of a free Carnot algebra, we shall deduce from the free case a description of h-affine functions on arbitrary step-2 Carnot algebras, together with several characterizations of those step-2 Carnot algebras where h-affine functions are affine in the usual sense of vector spaces. Our interest for h-affine functions stems from their relationship with a class of sets called precisely monotone, recently introduced in the literature, as well as from their relationship with minimal hypersurfaces.
In this paper we prove the one-dimensional Preiss theorem in the first Heisenberg group $mathbb H^1$. More precisely we show that a Radon measure $phi$ on $mathbb H^1$ with positive and finite one-density with respect to the Koranyi distance is suppo rted on a one-rectifiable set in the sense of Federer, i.e., it is supported on the countable union of the images of Lipschitz maps $Asubseteq mathbb Rtomathbb H^1$. The previous theorem is a consequence of a Marstrand-Mattila type rectifiability criterion, which we prove in arbitrary Carnot groups for measures with tangent planes that admit a normal complementary subgroup. Namely, in this co-normal case, even if we a priori ask that the tangent planes at a point might rotate at different scales, a posteriori the measure has a unique tangent almost everywhere. Since every horizontal subgroup has a normal complement, our criterion applies in the particular case of one-dimensional horizontal subgroups. These results are the outcome of a detailed study of a new notion of rectifiability: we say that a Radon measure on a Carnot group is $mathscr{P}_h$-rectifiable, for $hinmathbb N$, if it has positive $h$-lower density and finite $h$-upper density almost everywhere, and, at almost every point, it admits as tangent measures only (multiple of) the Haar measure of a homogeneous subgroup of Hausdorff dimension $h$. We also prove several structure properties of $mathscr{P}_h$-rectifiable measures. First, we compare $mathscr{P}_h$-rectifiability with other notions of rectifiability previously known in the literature in the setting of Carnot groups and we realize that it is strictly weaker than them. Furthermore, we show that a $mathscr{P}_h$-rectifiable measure has almost everywhere positive and finite $h$-density whenever the tangents admit at least one complementary subgroup.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا