ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperatures and metallicities of M giants in the galactic Bulge from low-resolution K-band spectra

68   0   0.0 ( 0 )
 نشر من قبل Mathias Schultheis
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With the existing and upcoming large multi-fibre low-resolution spectrographs, the question arises how precise stellar parameters such as Teff and [Fe/H] can be obtained from low-resolution K-band spectra with respect to traditional photometric temperature measurements. Until now, most of the effective temperatures in galactic Bulge studies come directly from photometric techniques. Uncertainties in interstellar reddening and in the assumed extinction law could lead to large systematic errors. We aim to obtain and calibrate the relation between Teff and the $rm ^{12}CO$ first overtone bands for M giants in the galactic Bulge covering a wide range in metallicity. We use low-resolution spectra for 20 M giants with well-studied parameters from photometric measurements covering the temperature range 3200 < Teff < 4500 K and a metallicity range from 0.5 dex down to -1.2 dex and study the behaviour of Teff and [Fe/H] on the spectral indices. We find a tight relation between Teff and the $rm ^{12}CO(2-0)$ band with a dispersion of 95 K as well as between Teff and the $rm ^{12}CO(3-1)$ with a dispersion of 120 K. We do not find any dependence of these relations on the metallicity of the star, making them relation attractive for galactic Bulge studies. This relation is also not sensitive to the spectral resolution allowing to apply this relation in a more general way. We also found a correlation between the combination of the NaI, CaI and the $rm ^{12}CO$ band with the metallicity of the star. However this relation is only valid for sub-solar metallicities. We show that low-resolution spectra provide a powerful tool to obtain effective temperatures of M giants. We show that this relation does not depend on the metallicity of the star within the investigated range and is also applicable to different spectral resolution.

قيم البحث

اقرأ أيضاً

63 - Supriyo Ghosh , D. K. Ojha , 2020
We present here quantitative diagnostic tools for cool giants that employ low-resolution near-infrared spectroscopy in the $K$-band for stellar population studies. In this study, a total of 260 cool giants (177 stars observed with X-shooter and 83 st ars observed with NIFS) are used covering a wider metallicity range than in earlier works. We measure equivalent widths of some of the selected important $K$-band spectral features like Na I, Fe I, and $^{12}$CO after degrading the spectral resolution (R $sim$ 1200) to investigate the spectral behavior with fundamental parameters (e.g. effective temperature and metallicity). We derive empirical relations to measure effective temperature using the $^{12}$CO first-overtone band at 2.29 $mu$m and 2.32 $mu$m and show a detailed quantitative metallicity dependence of these correlations. We find that the empirical relations based on solar-neighborhood stars can incorporate large uncertainty in evaluating $T_{eff}$ for metal-poor or metal-rich stars. Furthermore, we explore all the spectral lines to establish the empirical relation with metallicity and find that the quadratic fit of the combination of Na I and $^{12}$CO at 2.29 $mu$m lines yields a reliable empirical relation at [$Fe/H$] $leq$ $-$0.4 dex, while a linear fit of any line offers a good metallicity scale for stars having [$Fe/H$] $geq$ 0.0 dex.
Accurate metallicities of RR Lyrae are extremely important in constraining period-luminosity-metallicity relationships (PLZ), particularly in the near-infrared. We analyse 69 high-resolution spectra of Galactic RR Lyrae stars from the Southern Africa n Large Telescope (SALT). We measure metallicities of 58 of these RR Lyrae stars with typical uncertainties of 0.13 dex. All but one RR Lyrae in this sample has accurate ({sigma}_parallax ~ 10%) parallax from Gaia. Combining these new high resolution spectroscopic abundances with similar determinations from the literature for 93 stars, we present new PLZ relationships in WISE W1 and W2 magnitudes, and the Wesenheit magnitudes W(W1,V-W1) and W(W2,V-W2).
Oxygen and zinc in the Galactic bulge are key elements for the understanding of the bulge chemical evolution. Oxygen-to-iron abundance ratios provide a most robust indicator of the star formation rate and chemical evolution of the bulge. Zinc is enha nced in metal-poor stars, behaving as an $alpha$-element, and its production may require nucleosynthesis in hypernovae. Most of the neutral gas at high redshift is in damped Lyman-alpha systems (DLAs), where Zn is also observed to behave as an alpha-element. The aim of this work is the derivation of the alpha-element oxygen, together with nitrogen, and the iron-peak element zinc abundances in 417 bulge giants, from moderate resolution (R~22,000) FLAMES-GIRAFFE spectra. For stars in common with a set of UVES spectra with higher resolution (R~45,000), the data are intercompared. The results are compared with literature data and chemodynamical models.
The Milky Way bulge is an important tracer of the early formation and chemical enrichment of the Galaxy. The abundances of different iron-peak elements in field bulge stars can give information on the nucleosynthesis processes that took place in the earliest supernovae. Cobalt (Z=27) and copper (Z=29) are particularly interesting.We aim to identify the nucleosynthesis processes responsible for the formation of the iron-peak elements Co and Cu. Methods. We derived abundances of the iron-peak elements cobalt and copper in 56 bulge giants, 13 of which were red clump stars. High-resolution spectra were obtained using FLAMES-UVES at the ESO Very Large Telescope by our group in 2000-2002, which appears to be the highest quality sample of high-resolution data on bulge red giants obtained in the literature to date. Over the years we have derived the abundances of C, N, O, Na, Al, Mg; the iron-group elements Mn and Zn; and neutron-capture elements. In the present work we derive abundances of the iron-peak elements cobalt and copper. We also compute chemodynamical evolution models to interpret the observed behaviour of these elements as a function of iron. The sample stars show mean values of [Co/Fe]~0.0 at all metallicities, and [Cu/Fe]~0.0 for [Fe/H]>-0.8 and decreasing towards lower metallicities with a behaviour of a secondary element. We conclude that [Co/Fe] varies in lockstep with [Fe/H], which indicates that it should be produced in the alpha-rich freezeout mechanism in massive stars. Instead [Cu/Fe] follows the behaviour of a secondary element towards lower metallicities, indicating its production in the weak s-process nucleosynthesis in He-burning and later stages. The chemodynamical models presented here confirm the behaviour of these two elements (i.e. [Co/Fe] vs. [Fe/H]~constant and [Cu/Fe] decreasing with decreasing metallicities).
We present chemical abundances in K and M red-giant members of the Galactic bulge derived from high-resolution infrared spectra obtained with the Phoenix spectrograph on Gemini-South. The elements studied are carbon, nitrogen, oxygen, sodium, titaniu m, and iron. The evolution of C and N abundances in the studied red-giants show that their oxygen abundances represent the original values with which the stars were born. Oxygen is a superior element for probing the timescale of bulge chemical enrichment via [O/Fe] versus [Fe/H]. The [O/Fe]-[Fe/H] relation in the bulge does not follow the disk relation, with [O/Fe] values falling above those of the disk. Titanium also behaves similarly to oxygen with respect to iron. Based on these elevated values of [O/Fe] and [Ti/Fe] extending to large Fe abundances, it is suggested that the bulge underwent a more rapid chemical enrichment than the halo. In addition, there are declines in both [O/Fe] and [Ti/Fe] in those bulge targets with the largest Fe abundances, signifying another source affecting chemical evolution: perhaps Supernovae of Type Ia. Sodium abundances increase dramatically in the bulge with increasing metallicity, possibly reflecting the metallicity dependant yields from supernovae of Type II, although Na contamination from H-burning in intermediate mass stars cannot be ruled out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا