ﻻ يوجد ملخص باللغة العربية
The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed on some ultra cool dwarfs, with spectral type earlier than M7. Such kind of coherent events resemble the auroral radio emission from the magnetized planets of the solar system. In this paper, we present a tridimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of the terrestrial auroral kilometric radiation. This model proves to be a powerful tool to understand the auroral radio-emission phenomenon, allowing us to derive some general conclusions about the effects of the models free parameters on the features of the coherent pulses, and to learn more about the detectability of such kind of pulsed radio emission.
We present calculations of auroral radio powers of magnetised hot Jupiters orbiting Sun-like stars, computed using global magnetohydrodynamic (MHD) modelling of the magnetospheric and ionospheric convection arising from the interaction between the ma
In this paper we simulate the cyclic circularly-polarised pulses of the ultra-cool dwarf TVLM513-46546, observed with the VLA at 4.88 and 8.44 GHz on May 2006, by using a 3D model of the auroral radio emission from the stellar magnetosphere. During t
The non-thermal radio emission of main-sequence early-type stars is a signature of stellar magnetism. We present multi-wavelength (1.6-16.7 GHz) ATCA measurements of the early-type magnetic star rho OphC, which is a flat-spectrum non-thermal radio so
A number of fast-rotating ultra cool dwarfs (UCDs) emit pulsed coherent radiation, attributed to the electron cyclotron maser instability, a phenomenon that occurs in the solar system at planets with strong auroral emission. In this paper we examine
We report the detection of the auroral radio emission from the early-type magnetic star HD142301. New VLA observations of HD142301 detected highly polarized amplified emission occurring at fixed stellar orientations. The coherent emission mechanism r