ترغب بنشر مسار تعليمي؟ اضغط هنا

Global dynamics above the first excited energy for the nonlinear Schrodinger equation with a potential

62   0   0.0 ( 0 )
 نشر من قبل Kenji Nakanishi
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Kenji Nakanishi




اسأل ChatGPT حول البحث

Consider the focusing nonlinear Schrodinger equation with a potential with a single negative eigenvalue. It has solitons with negative small energy, which are asymptotically stable, and solitons with positive large energy, which are unstable. We classify the global dynamics into 9 sets of solutions in the phase space including both solitons, restricted by small mass, radial symmetry, and an energy bound slightly above the second lowest one of solitons. The classification includes a stable set of solutions which start near the first excited solitons, approach the ground states locally in space for large time with large radiation to the spatial infinity, and blow up in negative finite time.



قيم البحث

اقرأ أيضاً

Consider the focusing energy critical Schrodinger equation in three space dimensions with radial initial data in the energy space. We describe the global dynamics of all the solutions of which the energy is at most slightly larger than that of the gr ound states, according to whether it stays in a neighborhood of them, blows up in finite time or scatters. In analogy with the paper by Schlag and the first author on the subcritical equation, the proof uses an analysis of the hyperbolic dynamics near them and the variational structure far from them. The key step that allows to classify the solutions is the one-pass lemma. The main difference from the subcritical case is that one has to introduce a scaling parameter in order to describe the dynamics near them. One has to take into account this parameter in the analysis around the ground states by introducing some orthogonality conditions. One also has to take it into account in the proof of the one-pass lemma by comparing the contribution in the variational region and in the hyperbolic region.
125 - Sheng Wang , Chengbin Xu 2021
In this paper, we show the scattering of the solution for the focusing inhomogenous nonlinear Schrodinger equation with a potential begin{align*} ipartial_t u+Delta u- Vu=-|x|^{-b}|u|^{p-1}u end{align*} in the energy space $H^1(mathbb R^3)$. We pro ve a scattering criterion, and then we use it together with Morawetz estimate to show the scattering theory.
171 - Marco Squassina 2009
The semiclassical limit of a nonlinear focusing Schrodinger equation in presence of nonconstant electric and magnetic potentials V,A is studied by taking as initial datum the ground state solution of an associated autonomous elliptic equation. The co ncentration curve of the solutions is a parameterization of the solutions of a Newton ODE involving the electric force as well as the magnetic force via the Lorenz law of electrodynamics.
We consider the $1d$ cubic nonlinear Schrodinger equation with a large external potential $V$ with no bound states. We prove global regularity and quantitative bounds for small solutions under mild assumptions on $V$. In particular, we do not require any differentiability of $V$, and make spatial decay assumptions that are weaker than those found in the literature (see for example cite{Del,N,GPR}). We treat both the case of generic and non-generic potentials, with some additional symmetry assumptions in the latter case. Our approach is based on the combination of three main ingredients: the Fourier transform adapted to the Schrodinger operator, basic bounds on pseudo-differential operators that exploit the structure of the Jost function, and improved local decay and smoothing-type estimates. An interesting aspect of the proof is an approximate commutation identity for a suitable notion of a vectorfield, which allows us to simplify the previous approaches and extend the known results to a larger class of potentials. Finally, under our weak assumptions we can include the interesting physical case of a barrier potential as well as recover the result of cite{MMS} for a delta potential.
In this paper we consider the inhomogeneous nonlinear Schrodinger equation $ipartial_t u +Delta u=K(x)|u|^alpha u,, u(0)=u_0in H^s({mathbb R}^N),, s=0,,1,$ $Ngeq 1,$ $|K(x)|+|x|^s| abla^sK(x)|lesssim |x|^{-b},$ $0<b<min(2,N-2s),$ $0<alpha<{(4-2b)/(N- 2s)}$. We obtain novel results of global existence for oscillating initial data and scattering theory in a weighted $L^2$-space for a new range $alpha_0(b)<alpha<(4-2b)/N$. The value $alpha_0(b)$ is the positive root of $Nalpha^2+(N-2+2b)alpha-4+2b=0,$ which extends the Strauss exponent known for $b=0$. Our results improve the known ones for $K(x)=mu|x|^{-b}$, $muin mathbb{C}$ and apply for more general potentials. In particular, we show the impact of the behavior of the potential at the origin and infinity on the allowed range of $alpha$. Some decay estimates are also established for the defocusing case. To prove the scattering results, we give a new criterion taking into account the potential $K$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا