ترغب بنشر مسار تعليمي؟ اضغط هنا

Operator Approach to the Master Equation for the One-Step Process

58   0   0.0 ( 0 )
 نشر من قبل Dmitry Kulyabov PhD
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Presentation of the probability as an intrinsic property of the nature leads researchers to switch from deterministic to stochastic description of the phenomena. The procedure of stochastization of one-step process was formulated. It allows to write down the master equation based on the type of of the kinetic equations and assumptions about the nature of the process. The kinetics of the interaction has recently attracted attention because it often occurs in the physical, chemical, technical, biological, environmental, economic, and sociological systems. However, there are no general methods for the direct study of this equation. Leaving in the expansion terms up to the second order we can get the Fokker-Planck equation, and thus the Langevin equation. It should be clearly understood that these equations are approximate recording of the master equation. However, this does not eliminate the need for the study of the master equation. Moreover, the power series produced during the master equation decomposition may be divergent (for example, in spatial models). This makes it impossible to apply the classical perturbation theory. It is proposed to use quantum field perturbation theory for the statistical systems (the so-called Doi method). This work is a methodological material that describes the principles of master equation solution based on quantum field perturbation theory methods. The characteristic property of the work is that it is intelligible for non-specialists in quantum field theory. As an example the Verhulst model is used because of its simplicity and clarity (the first order equation is independent of the spatial variables, however, contains non-linearity). We show the full equivalence of the operator and combinatorial methods of obtaining and study of the one-step process master equation.



قيم البحث

اقرأ أيضاً

149 - Keith A. Earle 2011
A derivation of the Dirac equation in `3+1 dimensions is presented based on a master equation approach originally developed for the `1+1 problem by McKeon and Ord. The method of derivation presented here suggests a mechanism by which the work of Knut h and Bahrenyi on causal sets may be extended to a derivation of the Dirac equation in the context of an inference problem.
We study the asymptotics of solutions of the Boltzmann equation describing the kinetic limit of a lattice of classical interacting anharmonic oscillators. We prove that, if the initial condition is a small perturbation of an equilibrium state, and va nishes at infinity, the dynamics tends diffusively to equilibrium. The solution is the sum of a local equilibrium state, associated to conserved quantities that diffuse to zero, and fast variables that are slaved to the slow ones. This slaving implies the Fourier law, which relates the induced currents to the gradients of the conserved quantities.
This article reviews recent work on the Kac master equation and its low dimensional counterpart, the Kac equation.
We utilize group-theoretical methods to develop a matrix representation of differential operators that act on tensors of any rank. In particular, we concentrate on the matrix formulation of the curl operator. A self-adjoint matrix of the curl operato r is constructed and its action is extended to a complex plane. This scheme allows us to obtain properties, similar to those of the traditional curl operator.
71 - A.L. Lisok , A.Yu. Trifonov , 2003
Based on the ideology of the Maslovs complex germ theory, a method has been developed for finding an exact solution of the Cauchy problem for a Hartree-type equation with a quadratic potential in the class of semiclassically concentrated functions. T he nonlinear evolution operator has been obtained in explicit form in the class of semiclassically concentrated functions. Parametric families of symmetry operators have been found for the Hartree-type equation. With the help of symmetry operators, families of exact solutions of the equation have been constructed. Exact expressions are obtained for the quasi-energies and their respective states. The Aharonov-Anandan geometric phases are found in explicit form for the quasi-energy states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا