ترغب بنشر مسار تعليمي؟ اضغط هنا

New low temperature phase in dense hydrogen: The phase diagram to 421 GPa

103   0   0.0 ( 0 )
 نشر من قبل Isaac Silvera
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the quest to make metallic hydrogen at low temperatures a rich number of new phases have been found and the highest pressure ones have somewhat flat phase lines, around room temperature. We have studied hydrogen to static pressures of GPa in a diamond anvil cell and down to liquid helium temperatures, using infrared spectroscopy. We report a new phase at a pressure of GPa and T=5 K. Although we observe strong darkening of the sample in the visible, we have no evidence that this phase is metallic hydrogen.



قيم البحث

اقرأ أيضاً

In recent years there has been intense experimental activity to observe solid metallic hydrogen. Wigner and Huntington predicted that under extreme pressures insulating molecular hydrogen would dissociate and transition to atomic metallic hydrogen. R ecently Dalladay-Simpson, Howie, and Gregoryanz reported a phase transition to an insulating phase in molecular hydrogen at a pressure of 325 GPa and 300 K. Because of its scientific importance we have scrutinized their experimental evidence to determine if their claim is justified. Based on our analysis, we conclude that they have misinterpreted their data: there is no evidence for a phase transition at 325 GPa.
Loubeyre, Occelli, and Dumas (LOD) [1] claim to have produced metallic hydrogen (MH) at a pressure of 425 GPa, without the necessary supporting evidence of an insulator to metal transition. The paper is much ado about nothing. Most of the results hav e been reported earlier. Zha, Liu, and Hemley [2] studied hydrogen at low temperature up to 360 GPa in 2012; they reported absorption studies up to 0.1eV. Eremets et al [3] studied dense hydrogen up to 480 GPa using standard bevel diamonds. They reported darkening of the sample and electrical conductivity in which they reported semi-metallic behavior around 440 GPa. In 2016 Dias, Noked, and Silvera [4] reported hydrogen was opaque at 420 GPa. In 2017 Dias and Silvera observed atomic metallic hydrogen at 495 GPa in the temperature range 5.5-83 K [5].
The dependence of the superconducting transition temperature T_{c} on nearly hydrostatic pressure has been determined to 67 GPa in an ac susceptibility measurement for a Li sample embedded in helium pressure medium. With increasing pressure, supercon ductivity appears at 5.47 K for 20.3 GPa, T_{c} rising rapidly to ~ 14 K at 30 GPa. The T_{c}(P)-dependence to 67 GPa differs significantly from that observed in previous studies where no pressure medium was used. Evidence is given that superconductivity in Li competes with symmetry breaking structural phase transitions which occur near 20, 30, and 62 GPa. In the pressure range 20-30 GPa, T_{c} is found to decrease rapidly in a dc magnetic field, the first evidence that Li is a type I superconductor.
Tungsten filaments used as sources of electrons in a low temperature liquid or gaseous helium environment have remarkable properties of operating at thousands of degrees Kelvin in surroundings at temperatures of order 1 K. We provide an explanation o f this performance in terms of important changes in the thermal transport mechanisms. The behavior can be cast as a first-order phase transition.
Hydrogen has been the essential element in the development of atomic and molecular physics1). Moving to the properties of dense hydrogen has appeared a good deal more complex than originally thought by Wigner and Hungtinton in their seminal paper pre dicting metal hydrogen2): the electrons and the protons are strongly coupled to each other and ultimately must be treated equally3)4). The determination of how and when molecular solid hydrogen will transform into a metal is the stepping stone towards a full understanding of the quantum-many body properties of dense hydrogen. The quest for metal hydrogen has pushed major developments of modern experimental high pressure physics, yet the various claims of its observation over the past 30 years have remained controversial5)6)7). Here we show a first order phase transition near 425 GPa from insulator molecular solid hydrogen to metal hydrogen. Pressure in excess of 400 GPa could be achieved by using the recently developed Toroidal Diamond Anvil Cell (T-DAC)8). The structural and electronic properties of dense solid hydrogen at 80 K have been characterized by synchrotron infrared spectroscopy. The continuous vibron frequency shift and the electronic band gap closure down to 0.5 eV, both linearly evolving with pressure, point to the stability of the insulator C2/c-24 phase up to the metallic transition. Upon pressure release, the metallic state transforms back to the C2/c-24 phase with almost no hysteresis, hence suggesting that the metallization proceeds through a structural transformation within the molecular solid, presumably to the Cmca-12 structure. Our results are in good agreement with the scenario recently disclosed by an advanced calculation able to capture many-body electronic correlations9).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا