ﻻ يوجد ملخص باللغة العربية
In the quest to make metallic hydrogen at low temperatures a rich number of new phases have been found and the highest pressure ones have somewhat flat phase lines, around room temperature. We have studied hydrogen to static pressures of GPa in a diamond anvil cell and down to liquid helium temperatures, using infrared spectroscopy. We report a new phase at a pressure of GPa and T=5 K. Although we observe strong darkening of the sample in the visible, we have no evidence that this phase is metallic hydrogen.
In recent years there has been intense experimental activity to observe solid metallic hydrogen. Wigner and Huntington predicted that under extreme pressures insulating molecular hydrogen would dissociate and transition to atomic metallic hydrogen. R
Loubeyre, Occelli, and Dumas (LOD) [1] claim to have produced metallic hydrogen (MH) at a pressure of 425 GPa, without the necessary supporting evidence of an insulator to metal transition. The paper is much ado about nothing. Most of the results hav
The dependence of the superconducting transition temperature T_{c} on nearly hydrostatic pressure has been determined to 67 GPa in an ac susceptibility measurement for a Li sample embedded in helium pressure medium. With increasing pressure, supercon
Tungsten filaments used as sources of electrons in a low temperature liquid or gaseous helium environment have remarkable properties of operating at thousands of degrees Kelvin in surroundings at temperatures of order 1 K. We provide an explanation o
Hydrogen has been the essential element in the development of atomic and molecular physics1). Moving to the properties of dense hydrogen has appeared a good deal more complex than originally thought by Wigner and Hungtinton in their seminal paper pre