ﻻ يوجد ملخص باللغة العربية
The prospect of coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. For instance, one route toward realizing topological matter is by coupling a 2D electron gas (2DEG) with strong spin-orbit interaction to an s-wave superconductor. Previous efforts along these lines have been hindered by interface disorder and unstable gating. Here, we report measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding multilayer devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunneling regime, overcoming the soft-gap problem in 2D superconductor-semiconductor hybrid systems. With the QPC in the open regime, we observe a first conductance plateau at 4e^2/h, as expected theoretically for a normal-QPC-superconductor structure. The realization of a hard-gap semiconductor-superconductor system that is amenable to top-down processing provides a means of fabricating scalable multicomponent hybrid systems for applications in low-dissipation electronics and topological quantum information.
Many present and future applications of superconductivity would benefit from electrostatic control of carrier density and tunneling rates, the hallmark of semiconductor devices. One particularly exciting application is the realization of topological
Conductance at zero source-drain voltage bias in InSb nanowire/NbTiN superconductor devices exhibits peaks that are close to a quantized value of $2e^2/h$. The nearly quantized resonances evolve in the tunnel barrier strength, magnetic field and magn
We show that partially separated Andreev bound states (ps-ABSs), comprised of pairs of overlapping Majorana bound states (MBSs) emerging in quantum dot-semiconductor-superconductor heterostructures, produce robust zero bias conductance plateaus in en
Quantized conductance is reported in high-crystalline tin oxide (SnO2) nanobelt back-gate field-effect transistors, at low temperatures. The quantized conductance was observed as current oscillations in the drain current vs. gate voltage characterist
Electric-field effect control of two-dimensional electron gases (2-DEG) has enabled the exploration of nanoscale electron quantum transport in semiconductors. Beyond these classical materials, transition metal-oxide-based structures have d-electronic