ﻻ يوجد ملخص باللغة العربية
A novel hadron calorimeter is being developed for future lepton colliding beam detectors. The calorimeter is optimized for the application of Particle Flow Algorithms (PFAs) to the measurement of hadronic jets and features a very finely segmented readout with 1 x 1 cm2 cells. The active media of the calorimeter are Resistive Plate Chambers (RPCs) with a digital, i.e. one-bit, readout. To first order the energy of incident particles in this calorimeter is reconstructed as being proportional to the number of pads with a signal over a given threshold. A large-scale prototype calorimeter with approximately 500,000 readout channels has been built and underwent extensive testing in the Fermilab and CERN test beams. This paper reports on the design, construction, and commissioning of the electronic readout system of this prototype calorimeter. The system is based on the DCAL front-end chip and a VME-based back-end.
A novel hadron calorimeter is being developed for future lepton colliding beam detectors. The calorimeter is optimized for the application of Particle Flow Algorithms (PFAs) to the measurement of hadronic jets and features a very finely segmented rea
CEPC (Circular Electron and Positron Collider) is a large experiment facility proposed by Chinese particle physics community. One of its running option is being the Higgs factory. Calorimeter is the main part of this experiment to measure the jet ene
In the context of developing a hadron calorimeter with extremely fine granularity for the application of Particle Flow Algorithms to the measurement of jet energies at a future lepton collider, we report on extensive tests of a small scale prototype
An analog hadron calorimeter (AHCAL) prototype of 5.3 nuclear interaction lengths thickness has been constructed by members of the CALICE Collaboration. The AHCAL prototype consists of a 38-layer sandwich structure of steel plates and highly-segmente
The calibration procedure of a finely granulated digital hadron calorimeter with Resistive Plate Chambers as active elements is described. Results obtained with a stack of nine layers exposed to muons from the Fermilab test beam are presented.