ترغب بنشر مسار تعليمي؟ اضغط هنا

A Critical Analysis of One-Loop Neutrino Mass Models with Minimal Dark Matter

127   0   0.0 ( 0 )
 نشر من قبل Kristian McDonald
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Amine Ahriche




اسأل ChatGPT حول البحث

A recent paper investigated minimal R$ u$MDM models with the type T1-iii and T3 one-loop topologies. However, the candidate most-minimal model does not possess an accidental symmetry - the scalar potential contains an explicit symmetry breaking term, rendering the dark matter unstable. We present two models that cure this problem. However, we further show that all of the proposed minimal one-loop R$ u$MDM models suffer from a second problem - an additional source of explicit $Z_2$ symmetry breaking in the Yukawa sector. We perform a more-general analysis to show that neutrino mass models using either the type T3 or type T1-iii one-loop topologies do not give viable minimal dark matter candidates. Consequently, one-loop models of neutrino mass with minimal dark matter do not appear possible. Thus, presently there remains a single known (three-loop) model of neutrino mass that gives stable dark matter without invoking any new symmetries.



قيم البحث

اقرأ أيضاً

We propose a model in which the origin of neutrino mass is dependent on the existence of dark matter. Neutrinos acquire mass at the three-loop level and the dark matter is the neutral component of a fermion triplet. We show that experimental constrai nts are satisfied and that the dark matter can be tested in future direct-detection experiments. Furthermore, the model predicts a charged scalar that can be within reach of collider experiments like the LHC.
We consider the Peccei-Quinn (PQ) mechanism as the one behind the Dirac neutrino masses when these are generated through the $d=5$ effective operator $bar{L}tilde{H}N_Rphi$ at one loop level, with $phi$ being a Standard Model singlet scalar. In this setup, the PQ symmetry guarantees that the one-loop realization of such an effective operator gives the leading contribution to the Dirac neutrino masses by forbidding the contributions arising from its tree level realizations. All the mediators in the one-loop neutrino mass diagrams can be stabilized by a remnant $Z_N$ symmetry from the PQ symmetry breaking, thus forming a dark sector besides the axion sector and leading to mixed axion/WIMP dark matter scenarios.
We carry out a systematic investigation for the minimal Dirac neutrino mass models emerging from generic one-loop and two-loop topologies that arise from $d=5$ effective operator with a singlet scalar, $sigma$. To ensure that the tree-level Dirac mas s, as well as Majorana mass terms at all orders, are absent for the neutrinos, we work in the framework where the Standard Model is supplemented by the well-motivated $U(1)_{B-L}$ gauge symmetry. At the one-loop level, we analyze six possible topologies, out of which two of them have the potential to generate desired Dirac neutrino mass. Adopting a systematic approach to select minimal models, we construct seventeen viable one-loop Dirac neutrino mass models. By embracing a similar methodical approach at the two-loop, we work out twenty-three minimal candidates. Among the forty selected economical models, the majority of the models proposed in this work are new. In our search, we also include the scenarios where the particles in the loop carry charges under the color group. Furthermore, we discuss the possible dark matter candidates within a given model, if any, without extending the minimal particle content.
Minimal Dark Matter (MDM) is a theoretical framework highly appreciated for its minimality and yet its predictivity. Of the two only viable candidates singled out in the original analysis, the scalar eptaplet has been found to decay too quickly to be around today, while the fermionic quintuplet is now being probed by indirect Dark Matter (DM) searches. It is therefore timely to critically review the MDM paradigm, possibly pointing out generalizations of this framework. We propose and explore two distinct directions. One is to abandon the assumption of DM electric neutrality in favor of absolutely stable, millicharged DM candidates which are part of $SU(2)_{text{L}}$ multiplets with integer isospin. Another possibility is to lower the cutoff of the model, which was originally fixed at the Planck scale, to allow for DM decays. We find new viable MDM candidates and study their phenomenology in detail.
77 - Ernest Ma 2020
In the context of a left-right extension of the standard model of quarks and leptons with the addition of a gauged $U(1)_D$ dark symmetry, it is shown how the electron may obtain a radiative mass in one loop and two Dirac neutrinos obtain masses in three loops.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا