ترغب بنشر مسار تعليمي؟ اضغط هنا

A superfluid boundary layer

136   0   0.0 ( 0 )
 نشر من قبل George William Stagg
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a non-classical average velocity profile which continually sheds small vortex rings into the bulk. We characterise this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.

قيم البحث

اقرأ أيضاً

262 - M.C. Gordillo , J. Boronat 2020
We revisited the phase diagram of the second layer of 4He on top of graphite using quantum Monte Carlo methods. Our aim was to explore the existence of the novel phases suggested recently in experimental works, and determine their properties and stab ility limits. We found evidence of a superfluid quantum phase with hexatic correlations, induced by the corrugation of the first Helium layer, and a quasi-two-dimensional supersolid corresponding to a 7/12 registered phase. The 4/7 commensurate solid was found to be unstable, while the triangular incommensurate crystals, stable at large densities, were normal.
We report the formation of a ring-shaped array of vortices after injection of angular momentum in a polariton superfluid. The angular momentum is injected by a $ell= 8$ Laguerre-Gauss beam, whereas the global rotation of the fluid is hindered by a na rrow Gaussian beam placed at its center. In the linear regime a spiral interference pattern containing phase defects is visible. In the nonlinear (superfluid) regime, the interference disappears and the vortices nucleate as a consequence of the angular momentum quantization. The radial position of the vortices evolves freely in the region between the two pumps as a function of the density. Hydrodynamic instabilities resulting in the spontaneous nucleation of vortex-antivortex pairs when the system size is sufficiently large confirm that the vortices are not constrained by interference when nonlinearities dominate the system.
Flexural mode vibrations of miniature piezoelectric tuning forks (TF) are known to be highly sensitive to superfluid excitations and quantum turbulence in $mathrm{^3He}$ and $mathrm{^4He}$ quantum fluids, as well as to the elastic properties of solid $mathrm{^4He}$, complementing studies by large scale torsional resonators. Here we explore the sensitivity of a TF, capable of simultaneously operating in both the flexural and torsional modes, to excitations in the normal and superfluid $mathrm{^4He}$. The torsional mode is predominantly sensitive to shear forces at the sensor - fluid interface and much less sensitive to changes in the density of the surrounding fluid when compared to the flexural mode. Although we did not reach the critical velocity for quantum turbulence onset in the torsional mode, due to its order of magnitude higher frequency and increased acoustic damping, the torsional mode was directly sensitive to fluid excitations, linked to quantum turbulence created by the flexural mode. The combination of two dissimilar modes in a single TF sensor can provide a means to study the details of elementary excitations in quantum liquids, and at interfaces between solids and quantum fluid.
We show that the maximum population imbalance ratio $P_mathrm{CC}$ for a two-component Fermi gas near the unitarity limit to condense does not increase with the trap aspect ratio $lambda$, by two methods of 1) solving the Bogoliubov-de Gennes equatio ns with coupling-constant renormalization, and 2) studying the pairing susceptibility by the real-space self-consistent $T$-matrix approximation. The deviation of the cloud shape from what is expected from the trap shape increases but stays minor with increasing $lambda$ up to 50. This finding indicates that despite the apparent discrepancy between the MIT and Rice experiments over the value of $P_mathrm{CC}$ and the validity of local density approximation, the equilibrium state of the system for the aspect ratio in the Rice experiment should be consistent with that of MIT.
This is a Reply to Nemirovskii Comment [Phys. Rev. B 94, 146501 (2016)] on the Khomenko et al, [Phys.Rev. B v.91, 180504(2016)], in which a new form of the production term in Vinens equation for the evolution of the vortex-line density $cal L$ in the thermal counterflow of superfluid $^4$He in a channel was suggested. To further substantiate the suggested form which was questioned in the Comment, we present a physical explanation for the improvement of the closure suggested in Khomenko et al [Phys.Rev. B v. 91, 180504(2016)] in comparison to the form proposed by Vinen. We also discuss the closure for the flux term, which agrees well with the numerical results without any fitting parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا