ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental stellar parameters for selected T-Tauri stars in the Chamaeleon and Rho Ophiuchus star-forming regions

311   0   0.0 ( 0 )
 نشر من قبل David James
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of an optical photometry and high-resolution spectroscopy campaign for a modest sample of X-ray selected stars in the Chamaeleon and Rho Ophiuchus star forming regions. With R~50000 optical spectra, we establish kinematic membership of the parent association and confirm stellar youth for each star in our sample. With the acquisition of new standardized BVIc photometry, in concert with near-infrared data from the literature, we derive age and mass from stellar positions in model-dependent Hertzsprung-Russell diagrams. We compare isochronal ages derived using colour-dependent extinction values finding that, within error bars, ages are the same irrespective of whether E(B-V), E(V-Ic), E(J-H) or E(H-K) is used to establish extinction, although model ages tend to be marginally younger for redder Ecolour values. For Cham I and Eta Cham members we derive ages of ~< 5-6 Myr, whereas our three Eta Cha candidates are more consistent with a ~> 25 Myr post-T Tauri star population. In Rho Ophiuchus, most stars in our sample have isochronal ages <10 Myr. Five objects show evidence of strong infrared excess (Av>5) in the 2MASS colour colour diagram, however in terms of Halpha emission, all stars except RXJ1625.6-2613 are consistent with being weak-lined T-Tauri stars. Spectral energy distributions (SEDs) over the range ~ 4000A < wavelength < 1000 microns, show that only one Chamaeleon star (RXJ1112.7-7637) and three Rho Ophiuchus stars (ROXR1 13, RXJ1625.6-2613 & RXJ1627.1-2419) reveal substantial departures from a bare photosphere.

قيم البحث

اقرأ أيضاً

132 - E. Furlan 2009
We analyze samples of Spitzer Infrared Spectrograph (IRS) spectra of T Tauri stars in the Ophiuchus, Taurus, and Chamaeleon I star-forming regions, whose median ages lie in the <1 to 2 Myr range. The median mid-infrared spectra of objects in these th ree regions are similar in shape, suggesting, on average, similar disk structures. When normalized to the same stellar luminosity, the medians follow each other closely, implying comparable mid-infrared excess emission from the circumstellar disks. We use the spectral index between 13 and 31 micron and the equivalent width of the 10 micron silicate emission feature to identify objects whose disk configuration departs from that of a continuous, optically thick accretion disk. Transitional disks, whose steep 13-31 micron spectral slope and near-IR flux deficit reveal inner disk clearing, occur with about the same frequency of a few percent in all three regions. Objects with unusually large 10 micron equivalent widths are more common (20-30%); they could reveal the presence of disk gaps filled with optically thin dust. Based on their medians and fraction of evolved disks, T Tauri stars in Taurus and Chamaeleon I are very alike. Disk evolution sets in early, since already the youngest region, the Ophiuchus core (L1688), has more settled disks with larger grains. Our results indicate that protoplanetary disks show clear signs of dust evolution at an age of a few Myr, even as early as ~1 Myr, but age is not the only factor determining the degree of evolution during the first few million years of a disks lifetime.
73 - Rainer Koehler 2001
We report on a multiplicity survey of a sample of X-ray selected young stars in the Chamaeleon association. We used speckle-interferometry and direct imaging to find companions in the separation range 0.13 to 6. After correction for chance alignment with background stars, we find a multiplicity (number of binaries or multiples divided by number of systems) of (14.0+-4.3)% and a companion star frequency (number of companions divided by number of systems) of (14.7+-5.1)%. Compared to solar-type main-sequence stars, the companion star frequency is lower by a factor of 0.61+-0.27. This is remarkably different from the high multiplicity found in the Taurus-Auriga star-forming region and for T Tauri stars in Chamaeleon known before ROSAT. We find only a few binaries with projected separations of more than 70 AU, also in contrast to the results for stars known before ROSAT. This indicates that the X-ray selected stars belong to a different population than the stars known before ROSAT, a hypothesis further supported by their Hipparcos distances and proper motions.
Far-infrared and (sub)millimeter fluxes can be used to study dust in protoplanetary disks, the building blocks of planets. Here, we combine observations from the Herschel Space Observatory with ancillary data of 284 protoplanetary disks in the Taurus , Chamaeleon I, and Ophiuchus star-forming regions, covering from the optical to mm/cm wavelengths. We analyze their spectral indices as a function of wavelength and determine their (sub)millimeter slopes when possible. Most disks display observational evidence of grain growth, in agreement with previous studies. No correlation is found between other tracers of disk evolution and the millimeter spectral indices. A simple disk model is used to fit these sources, and we derive posterior distributions for the optical depth at 1.3 mm and 10 au, the disk temperature at this same radius, and the dust opacity spectral index. We find the fluxes at 70 microns to correlate strongly with disk temperatures at 10 au, as derived from these simple models. We find tentative evidence for spectral indices in Chamaeleon I being steeper than those of disks in Taurus/Ophiuchus, although more millimeter observations are needed to confirm this trend and identify its possible origin. Additionally, we determine the median spectral energy distribution of each region and find them to be similar across the entire wavelength range studied, possibly due to the large scatter in disk properties and morphologies.
We report new dynamical masses for 5 pre-main sequence (PMS) stars in the L1495 region of the Taurus star-forming region (SFR) and 6 in the L1688 region of the Ophiuchus SFR. Since these regions have VLBA parallaxes these are absolute measurements of the stars masses and are independent of their effective temperatures and luminosities. Seven of the stars have masses $<0.6$ solar masses, thus providing data in a mass range with little data, and of these, 6 are measured to precision $< 5 %$. We find 8 stars with masses in the range 0.09 to 1.1 solar mass that agree well with the current generation of PMS evolutionary models. The ages of the stars we measured in the Taurus SFR are in the range 1-3 MY, and $<1$ MY for those in L1688. We also measured the dynamical masses of 14 stars in the ALMA archival data for Akeson~&~Jensens Cycle 0 project on binaries in the Taurus SFR. We find that the masses of 7 of the targets are so large that they cannot be reconciled with reported values of their luminosity and effective temperature. We suggest that these targets are themselves binaries or triples.
70 - G. Costigan 2012
We present the results of a variability study of accreting young stellar objects in the Chameleon I star-forming region which is based on ~300 high resolution optical spectra from the multi-object fibre spectrograph FLAMES/GIRAFFE at the ESO/VLT. Twe nty five objects with spectral types from G2-M5.75 were observed 12 times over the course of 15 months. Using the emission lines Ha (6562.81 A) and Ca II (8662.1 A) as accretion indicators we found 10 accreting and 15 non-accreting objects. We derived accretion rates for all accretors in the sample using the Ha equivalent width, Ha 10% width and the CaII equivalent width. The mean amplitude of variations in derived accretion rate from Ha equivalent width was ~ 0.37 dex, from Ca II equivalent width ~0.83 dex and from Ha 10% width ~1.11 dex. Based on the large amplitude of variations in accretion rates derived from the Ha 10% width with respect to the other diagnostics, we do not consider it to be a reliable accretion rate estimator. Taking the variations in Ha equivalent width and CaII equivalent width accretion rates to be closer to the true value, they suggest that the spread which has been found around the accretion rate to stellar mass relation is not due to the variability of individual objects on time-scales of weeks to ~1 year. From these variations we can also infer that the accretion rates are stable within < 0.37 dex over time-scales of less than 15 months. A major portion of the accretion variability was found to occur on less than the shortest time-scales in our observations, 8-25 days, which is comparable with the rotation periods of these young stellar objects. This could be an indication that what we are probing is spatial structure in the accretion flows, and also suggests that observations on time-scales of ~a couple of weeks are sufficient to limit the total extent of accretion rate variations in typical young stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا