ﻻ يوجد ملخص باللغة العربية
The scattering of 1D matter wave bright solitons on attractive potentials enables one to populate bound states, a feature impossible with noninteracting wave packets. Compared to noninteracting states, the populated states are renormalized by the attractive interactions between atoms and keep the same topology. This renormalization can even transform a virtual state into a bound state. By switching off adiabatically the interactions, the trapped wave packets converge towards the true noninteracting bound states. Our numerical studies show how such scattering experiments can reveal and characterize the surface states of a periodic structure whose translational invariance has been broken. We provide evidence that the corresponding 3D regime should be accessible with current techniques.
We use the ab initio Bethe Ansatz dynamics to predict the dissociation of one-dimensional cold-atom breathers that are created by a quench from a fundamental soliton. We find that the dissociation is a robust quantum many-body effect, while in the me
We find exponentially many exact quantum many-body scar states in a two-dimensional PXP model -- an effective model for a two-dimensional Rydberg atom array in the nearest-neighbor blockade regime. Such scar states are remarkably simple valence bond
The diagonal elements of the time correlation matrix are used to probe closed quantum systems that are measured at random times. This enables us to extract two distinct parts of the quantum evolution, a recurrent part and an exponentially decaying pa
Over the last decade, systems of individually-controlled neutral atoms, interacting with each other when excited to Rydberg states, have emerged as a promising platform for quantum simulation of many-body problems, in particular spin systems. Here, w
The beyond mean-field dynamics of a bent dark soliton embedded in a two-dimensional repulsively interacting Bose-Einstein condensate is explored. We examine the case of a single bent dark soliton comparing the mean-field dynamics to a correlated appr