ﻻ يوجد ملخص باللغة العربية
We evaluate two integrals over $xin [0,1]$ involving products of the function $zeta_1(a,x)equiv zeta(a,x)-x^{-a}$ for $Re (a)>1$, where $zeta(a,x)$ is the Hurwitz zeta function. The evaluation of these integrals for the particular case of integer $ageq 2$ is also presented. As an application we calculate the $O(g)$ weak-coupling expansion coefficient $c_{1}(varepsilon)$ of the Casimir energy for a film with Dirichlet-Dirichlet boundary conditions, first stated by Symanzik [Schrodinger representation and Casimir effect in renormalizable quantum field theory, Nucl. Phys. B 190 (1981) 1-44] in the framework of $gphi^4_{4-varepsilon}$ theory.
We consider two integrals over $xin [0,1]$ involving products of the function $zeta_1(a,x)equiv zeta(a,x)-x^{-a}$, where $zeta(a,x)$ is the Hurwitz zeta function, given by $$int_0^1zeta_1(a,x)zeta_1(b,x),dxquadmbox{and}quad int_0^1zeta_1(a,x)zeta_1(b
Applying the general framework for local zeta regularization proposed in Part I of this series of papers, we compute the renormalized vacuum expectation value of several observables (in particular, of the stress-energy tensor and of the total energy)
In Part I of this series of papers we have described a general formalism to compute the vacuum effects of a scalar field via local (or global) zeta regularization. In the present Part II we exemplify the general formalism in a number of cases which c
In this paper, whose aims are mainly pedagogical, we illustrate how to use the local zeta regularization to compute the stress-energy tensor of the Casimir effect. Our attention is devoted to the case of a neutral, massless scalar field in flat space
In this paper, sums represented in (3) are studied. The expressions are derived in terms of Bessel functions of the first and second kinds and their integrals. Further, we point out the integrals can be written as a Meijer G function.