ﻻ يوجد ملخص باللغة العربية
The concept of an $i$-symmetrization is introduced, which provides a convenient framework for most of the familiar symmetrization processes on convex sets. Various properties of $i$-symmetrizations are introduced and the relations between them investigated. New expressions are provided for the Steiner and Minkowski symmetrals of a compact convex set which exhibit a dual relationship between them. Characterizations of Steiner, Minkowski and central symmetrization, in terms of natural properties that they enjoy, are given and examples are provided to show that none of the assumptions made can be dropped or significantly weakened. Other familiar symmetrizations, such as Schwarz symmetrization, are discussed and several new ones introduced.
Formulas about the side lengths, diagonal lengths or radius of the circumcircle of a cyclic polygon in Euclidean geometry, hyperbolic geometry or spherical geometry can be unified.
Let $(X, d)$ be a compact metric space and let $mathcal{M}(X)$ denote the space of all finite signed Borel measures on $X$. Define $I colon mathcal{M}(X) to R$ by [I(mu) = int_X int_X d(x,y) dmu(x) dmu(y),] and set $M(X) = sup I(mu)$, where $mu$ rang
Let $(X, d)$ be a compact metric space and let $mathcal{M}(X)$ denote the space of all finite signed Borel measures on $X$. Define $I colon mathcal{M}(X) to R$ by [ I(mu) = int_X int_X d(x,y) dmu(x) dmu(y), ] and set $M(X) = sup I(mu)$, where $mu$ ra
Let $(X, d)$ be a compact metric space and let $mathcal{M}(X)$ denote the space of all finite signed Borel measures on $X$. Define $I colon mathcal{M}(X) to R$ by [ I(mu) = int_X int_X d(x,y) dmu(x) dmu(y), ] and set $M(X) = sup I(mu)$, where $mu$ ra
Given two $n_i$-dimensional Alexandrov spaces $X_i$ of curvature $ge 1$, the join of $X_1$ and $X_2$ is an $(n_1+n_2+1)$-dimensional Alexandrov space $X$ of curvature $ge 1$, which contains $X_i$ as convex subsets such that their points are $frac pi2