ترغب بنشر مسار تعليمي؟ اضغط هنا

Vacuum Rabi Splitting in Nanomechanical QED System with Nonlinear Resonator

49   0   0.0 ( 0 )
 نشر من قبل Yibo Gao
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Considering the intrinsic nonlinearity in a nanomechanical resonator coupled to a charge qubit, vacuum Rabi splitting effect is studied in a nanomechanical QED (qubit-resonator) system. A driven nonlinear Jaynes-Cummings model describes the dynamics of this qubit-resonator system. Using quantum regression theorem and master equation approach, we have calculated the two-time correlation spectrum analytically. In the weak driving limit, these analytical results clarify the influence of the driving strength and nonlinearity parameter on the correlation spectrum. Also, numerical calculations confirm these analytical results.



قيم البحث

اقرأ أيضاً

49 - X. Xiao , M. Y. Zhao , S. M. Yu 2015
In nanomechanical QED system, consisting of a charge qubit and a nonlinear nanomechanical resonator, we study the temporal behavior of Rabi oscillation in the nonlinear Jaynes-Cummings model. Using microscopic master equation approach, we solve time evolution of the density operator describing this model. Also, the probability of excited state of charge qubit is calculated. These analytic calculations show how nonlinearity parameter and decay rates of two different excited states of the qubit-resonator system affect time-oscillating and decaying of Rabi oscillation.
We report the experimental observation of collective multi-mode vacuum Rabi splitting in free space. In contrast to optical cavities, the atoms couple to a continuum of modes, and the optical thickness of the cloud provides a measure of this coupling . The splitting, also referred as normal mode splitting, is monitored through the Rabi oscillations in the scattered intensity, and the results are fully explained by a linear-dispersion theory.
126 - C. Cheng , Y. B. Gao 2013
When the nonlinearity of nanomechanical resonator is not negligible, the quantum decoherence of charge qubit is studied analytically. Using nonlinear Jaynes-Cummings model, one explores the possibility of being quantum data bus for nonlinear nanomech anical resonator, the nonlinearity destroys the dynamical quantum information-storage and maintains the revival of quantum coherence of charge qubit. With the calculation of decoherence factor, we demonstrate the influence of the nonlinearity of nanomechanical resonator on engineered decoherence of charge qubit.
We show how the coherent oscillations of a nanomechanical resonator can be entangled with a microwave cavity in the form of a superconducting coplanar resonator. Dissipation is included and realistic values for experimental parameters are estimated.
This study is focused on the quantum dynamics of a nitrogen-vacancy (NV) center coupled to a nonlinear, periodically driven mechanical oscillator. For a continuous periodic driving that depends on the position of the oscillator, the mechanical motion is described by Mathieu elliptic functions. This solution is employed to study the dynamics of the quantum spin system including environmental effects and to evaluate the purity and the von Neumann entropy of the NV-spin. The unitary generation of coherence is addressed. We observe that the production of coherence through a unitary transformation depends on whether the system is prepared initially in mixed state. Production of coherence is efficient when the system initially is prepared in the region of the separatrix (i.e., the region where classical systems exhibit dynamical chaos). From the theory of dynamical chaos, we know that phase trajectories of the system passing through the homoclinic tangle have limited memory, and therefore the information about the initial conditions is lost. We proved that quantum chaos and diminishing of information about the mixed initial state favors the generation of quantum coherence through the unitary evolution. We introduced quantum distance from the homoclinic tangle and proved that for the initial states permitting efficient generation of coherence, this distance is minimal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا