ترغب بنشر مسار تعليمي؟ اضغط هنا

$K$-series X-ray yield measurement of kaonic hydrogen atoms in a gaseous target

129   0   0.0 ( 0 )
 نشر من قبل Hexi Shi
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We measured the $K$-series X-rays of the $K^{-}p$ exotic atom in the SIDDHARTA experiment with a gaseous hydrogen target of 1.3 g/l, which is about 15 times the $rho_{rm STP}$ of hydrogen gas. At this density, the absolute yields of kaonic X-rays, when a negatively charged kaon stopped inside the target, were determined to be 0.012$^{+0.004}_{-0.003}$ for $K_{alpha}$ and 0.043$^{+0.012}_{-0.011}$ for all the $K$-series transitions $K_{tot}$. These results, together with the KEK E228 experiment results, confirm for the first time a target density dependence of the yield predicted by the cascade models, and provide valuable information to refine the parameters used in the cascade models for the kaonic atoms.



قيم البحث

اقرأ أيضاً

209 - M. Bazzi , G. Beer , L. Bombelli 2012
Kaonic hydrogen atoms provide a unique laboratory to probe the kaon-nucleon strong interaction at the energy threshold, allowing an investigation of the interplay between spontaneous and explicit chiral symmetry breaking in low-energy QCD. The SIDDHA RTA Collaboration has measured the $K$-series X rays of kaonic hydrogen atoms at the DA$Phi$NE electron-positron collider of Laboratori Nazionali di Frascati, and has determined the most precise values of the strong-interaction induced shift and width of the $1s$ atomic energy level. This result provides vital constraints on the theoretical description of the low-energy $bar{K}N$ interaction.
122 - M. Bazzi , G. Beer , L. Bombelli 2011
The $bar{K}N$ system at threshold is a sensitive testing ground for low energy QCD, especially for the explicit chiral symmetry breaking. Therefore, we have measured the $K$-series x rays of kaonic hydrogen atoms at the DA$Phi$NE electron-positron co llider of Laboratori Nazionali di Frascati, and have determined the most precise values of the strong-interaction energy-level shift and width of the $1s$ atomic state. As x-ray detectors, we used large-area silicon drift detectors having excellent energy and timing resolution, which were developed especially for the SIDDHARTA experiment. The shift and width were determined to be $epsilon_{1s} = -283 pm 36 pm 6 {(syst)}$ eV and $Gamma_{1s} = 541 pm 89 {(stat)} pm 22 {(syst)}$ eV, respectively. The new values will provide vital constraints on the theoretical description of the low-energy $bar{K}N$ interaction.
103 - M. Bazzi , G. Beer , C. Berucci 2013
The X-ray transition yields of kaonic atoms produced in Kapton polyimide (C22H10N2O5) were measured for the first time in the SIDDHARTA experiment. X-ray yields of the kaonic atoms with low atomic numbers (Z = 6, 7, and 8) and transitions with high p rincipal quantum numbers (n = 5-8) were determined. The relative yield ratios of the successive transitions and those of carbon-to-nitrogen (C:N) and carbon-to-oxygen (C:O) were also determined. These X-ray yields provide important information for understanding the capture ratios and cascade mechanisms of kaonic atoms produced in a compound material, such as Kapton.
96 - H. Shi , M. Bazzi , G. Beer 2016
In the exotic atoms where one atomic $1s$ electron is replaced by a $K^{-}$, the strong interaction between the $K^{-}$ and the nucleus introduces an energy shift and broadening of the low-lying kaonic atomic levels which are determined by only the e lectromagnetic interaction. By performing X-ray spectroscopy for Z=1,2 kaonic atoms, the SIDDHARTA experiment determined with high precision the shift and width for the $1s$ state of $K^{-}p$ and the $2p$ state of kaonic helium-3 and kaonic helium-4. These results provided unique information of the kaon-nucleus interaction in the low energy limit.
114 - S. Okada , G. Beer , H. Bhang 2007
We have measured the Balmer-series x-rays of kaonic $^4$He atoms using novel large-area silicon drift x-ray detectors in order to study the low-energy $bar{K}$-nucleus strong interaction. The energy of the $3d to 2p$ transition was determined to be 6 467 $pm$ 3 (stat) $pm$ 2 (syst) eV. The resulting strong-interaction energy-level shift is in agreement with theoretical calculations, thus eliminating a long-standing discrepancy between theory and experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا