ﻻ يوجد ملخص باللغة العربية
We analyzed a sample of 9418 fundamental-mode and first-overtone Classical Cepheids from the OGLE-IV Collection of Classical Cepheids. The distance to each Cepheid was calculated using the period-luminosity relation for the Wesenheit magnitude, fitted to our data. The classical Cepheids in the LMC are situated mainly in the bar and in the northern arm. The eastern part of the LMC is closer to us and the plane fit to the whole LMC sample yields the inclination $i=24.2pm0.7$ deg and position angle ${rm P.A.}=151.4pm1.7$ deg. We redefined the LMC bar by extending it in the western direction and found no offset from the plane of the LMC contrary to previous studies. On the other hand, we found that the northern arm is offset from a plane by about $-0.5$ kpc, which was not observed before. The age distribution of the LMC Cepheids shows one maximum at about 100 Myr. We demonstrate that the SMC has a non-planar structure and can be described as an extended ellipsoid. We identified two large ellipsoidal off-axis structures in the SMC. The northern one is located closer to us and is younger, while the south-western is farther and older. The age distribution of the SMC Cepheids is bimodal with one maximum at 110 Myr, and another one at 220 Myr. Younger stars are located in the closer part of this galaxy while older ones are more distant. We classified nine Cepheids from our sample as Magellanic Bridge objects. These Cepheids show a large spread in three-dimensions although five of them form a connection between the Clouds. The closest one is closer than any of the LMC Cepheids, while the farthest one -- farther than any SMC Cepheid. All but one Cepheids in the Magellanic Bridge are younger than 300 Myr. The oldest one can be associated with the SMC Wing.
We present a three-dimensional analysis of a sample of 22 859 type $ab$ RR Lyrae stars in the Magellanic System from the OGLE-IV Collection of RR Lyrae stars. The distance to each object was calculated based on its photometric metallicity and a theor
We present a three-dimensional structure of the Magellanic System using over 9 000 Classical Cepheids and almost 23 000 RR Lyrae stars from the OGLE Collection of Variable Stars. Given the vast coverage of the OGLE-IV data and very high completeness
We present a detailed analysis of Magellanic Bridge Cepheid sample constructed using the OGLE Collection of Variable Stars. Our updated Bridge sample contains 10 classical and 13 anomalous Cepheids. We calculate their individual distances using optic
We have determined the three-dimensional structure of the Magellanic Clouds and Magellanic Bridge using over $9,000$ Classical Cepheids (CCs) and almost $23,000$ RR~Lyrae (RRL) stars from the fourth phase of the OGLE project. For the CCs we calcula
In the present study, we examine reddening distribution across the LMC and SMC through largest data on Classical Cepheids provided by the OGLE Phase IV survey. The V and I band photometric data of 2476 fundamental mode (FU) and 1775 first overtone mo