ﻻ يوجد ملخص باللغة العربية
We measure the forward--backward asymmetry of the production of top quark and antiquark pairs in proton-antiproton collisions at center-of-mass energy $sqrt{s} = 1.96~mathrm{TeV}$ using the full data set collected by the Collider Detector at Fermilab (CDF) in Tevatron Run II corresponding to an integrated luminosity of $9.1~rm{fb}^{-1}$. The asymmetry is characterized by the rapidity difference between top quarks and antiquarks ($Delta y$), and measured in the final state with two charged leptons (electrons and muons). The inclusive asymmetry, corrected to the entire phase space at parton level, is measured to be $A_{text{FB}}^{tbar{t}} = 0.12 pm 0.13$, consistent with the expectations from the standard-model (SM) and previous CDF results in the final state with a single charged lepton. The combination of the CDF measurements of the inclusive $A_{text{FB}}^{tbar{t}}$ in both final states yields $A_{text{FB}}^{tbar{t}}=0.160pm0.045$, which is consistent with the SM predictions. We also measure the differential asymmetry as a function of $Delta y$. A linear fit to $A_{text{FB}}^{tbar{t}}(|Delta y|)$, assuming zero asymmetry at $Delta y=0$, yields a slope of $alpha=0.14pm0.15$, consistent with the SM prediction and the previous CDF determination in the final state with a single charged lepton. The combined slope of $A_{text{FB}}^{tbar{t}}(|Delta y|)$ in the two final states is $alpha=0.227pm0.057$, which is $2.0sigma$ larger than the SM prediction.
We present a measurement of the top-quark mass in events containing two leptons (electrons or muons) with a large transverse momentum, two or more energetic jets, and a transverse-momentum imbalance. We use the full proton-antiproton collision data s
The top-quark mass M_top is measured using top quark-antiquark pairs produced in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV and decaying into a fully hadronic final state. The full data set collected with the CDFII detector a
We present a measurement of the ZZ boson-pair production cross section in 1.96 TeV center-of-mass energy ppbar collisions. We reconstruct final states incorporating four charged leptons or two charged leptons and two neutrinos from the full data set
At the LHC, top quark pairs are dominantly produced from gluons, making it difficult to measure the top quark forward-backward asymmetry. To improve the asymmetry measurement, we study variables that can distinguish between top quarks produced from q
We present new measurements of the inclusive forward-backward ttbar production asymmetry, AFB, and its dependence on several properties of the ttbar system. The measurements are performed with the full Tevatron data set recorded with the CDF II detec