ترغب بنشر مسار تعليمي؟ اضغط هنا

High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars

139   0   0.0 ( 0 )
 نشر من قبل Marcello Giroletti
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. We characterize the spectral properties of the blazar population at low radio frequency compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6,100 deg^2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detected by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by fermilat. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120--180 MHz) blazar spectral index is $langle alpha_mathrm{low} rangle=0.57pm0.02$: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at $sim$GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.



قيم البحث

اقرأ أيضاً

We present low-frequency spectral energy distributions of 60 known radio pulsars observed with the Murchison Widefield Array (MWA) telescope. We searched the GaLactic and Extragalactic All-sky MWA (GLEAM) survey images for 200-MHz continuum radio emi ssion at the position of all pulsars in the ATNF pulsar catalogue. For the 60 confirmed detections we have measured flux densities in 20 x 8 MHz bands between 72 and 231 MHz. We compare our results to existing measurements and show that the MWA flux densities are in good agreement.
We present techniques developed to calibrate and correct Murchison Widefield Array (MWA) low frequency (72-300 MHz) radio observations for polarimetry. The extremely wide field-of-view, excellent instantaneous (u, v)-coverage and sensitivity to degre e-scale structure that the MWA provides enable instrumental calibration, removal of instrumental artefacts, and correction for ionospheric Faraday rotation through imaging techniques. With the demonstrated polarimetric capabilities of the MWA, we discuss future directions for polarimetric science at low frequencies to answer outstanding questions relating to polarised source counts, source depolarisation, pulsar science, low-mass stars, exoplanets, the nature of the interstellar and intergalactic media, and the solar environment.
The Murchison Widefield Array (MWA) is a new low-frequency interferometric radio telescope built in Western Australia at one of the locations of the future Square Kilometre Array (SKA). We describe the automated radio-frequency interference (RFI) det ection strategy implemented for the MWA, which is based on the AOFlagger platform, and present 72-231-MHz RFI statistics from 10 observing nights. RFI detection removes 1.1% of the data. RFI from digital TV (DTV) is observed 3% of the time due to occasional ionospheric or atmospheric propagation. After RFI detection and excision, almost all data can be calibrated and imaged without further RFI mitigation efforts, including observations within the FM and DTV bands. The results are compared to a previously published Low-Frequency Array (LOFAR) RFI survey. The remote location of the MWA results in a substantially cleaner RFI environment compared to LOFARs radio environment, but adequate detection of RFI is still required before data can be analysed. We include specific recommendations designed to make the SKA more robust to RFI, including: the availability of sufficient computing power for RFI detection; accounting for RFI in the receiver design; a smooth band-pass response; and the capability of RFI detection at high time and frequency resolution (second and kHz-scale respectively).
The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extreme ly low levels of radio frequency interference. The MWA operates at low radio frequencies, 80-300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3 km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised.
A new generation of low frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the Epoch of Reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of widefield low frequency radio interferometry. Precise calibration will be required to separate the small expected EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of the Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognised Frequency Modulated (FM) radio band. The observations have implications for future low frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at metre wavelengths to an observer beyond our own solar system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا