ﻻ يوجد ملخص باللغة العربية
We theoretically and experimentally investigate the optical absorption properties of heterostructures composed of graphene films and truncated photonic crystals (PCs) in the visible range. The experimental results show that the absorption of the heterostructure is enhanced greatly in the whole forbidden gap of PCs compared with that of graphene alone. The absorption is enhanced over a wide angle of incidence for both transverse electric (TE) and transverse magnetic (TM) polarizations. The enhanced absorption band broadens for TE polarization but narrows for TM polarization as the incident angle increases. In the forbidden gap of the PCs, the maximum absorptance of the heterostructures is nearly four times of that of bare graphene films for arbitrary incident angles and polarizations. The optical experiments are in excellent agreement with the theoretical results.
We report systematic studies of plasmonic and photonic guiding modes in large-area chemical-vapor-deposition-grown graphene on nanostructured silicon substrates. Light interaction in graphene with substrate photonic crystals can be classified into fo
Slow-light enhanced optical detection in liquid-infiltrated photonic crystals is theoretically studied. Using a scattering-matrix approach and the Wigner-Smith delay time concept, we show that optical absorbance benefits both from slow-light phenomen
We show that two-photon absorption (TPA) in Rubidium atoms can be greatly enhanced by the use of a hollow-core photonic bandgap fiber. We investigate off-resonant, degenerate Doppler-free TPA on the 5S1/2 - 5D5/2 transition and observe 1% absorption
Perfect, narrow-band absorption is achieved in an asymmetric 1D photonic crystal with a monolayer graphene defect. Thanks to the large third order nonlinearity of graphene and field localization in the defect layer we demonstrate the possibility to a
Enhanced optical absorption in two-dimensional (2D) materials has recently moved into the focus of nanophotonics research. In this work, we present a gain-assisted method to achieve critical coupling and demonstrate the maximum absorption in undoped