ﻻ يوجد ملخص باللغة العربية
It is well known that in general theories of gravity with the diffeomorphism symmetry, the black hole entropy is a Noether charge. But what will happen if the symmetry is explicitly broken? By investigating the covariant first law of black hole mechanics with background fields, we show that the Noether entropy is still applicable due to the local nature of the black hole entropy. Moreover, motivated by the proposal that the cosmological constant behaves as a thermodynamic variable, we allow the non-dynamical background fields to be varied. To illustrate this general formalism, we study a generic static black brane in the massive gravity. Using the first law and the scaling argument, we obtain two Smarr formulas. We show that both of them can be retrieved without relying on the first law, hence providing a self-consistent check of the theory.
The first law of black hole mechanics has been the main motivation for investigating thermodynamic properties of black holes. The first version of this law was proved in cite{Bardeen:1973gs} by considering perturbations of an asymptotically flat, sta
We discuss the connection between different entropies introduced for black hole. It is demonstrated on the two-dimensional example that the (quantum) thermodynamical entropy of a hole coincides (including UV-finite terms) with its statistical-mechani
Using a graphical analysis, we show that for the horizon radius $r_hgtrsim 4.8sqrttheta$, the standard semiclassical Bekenstein-Hawking area law for noncommutative Schwarzschild black hole exactly holds for all orders of $theta$. We also give the cor
We consider the linear stability of $4$-dimensional hairy black holes with mixed boundary conditions in Anti-de Sitter spacetime. We focus on the mass of scalar fields around the maximally supersymmetric vacuum of the gauged $mathcal{N}=8$ supergravi
In the large D limit, and under certain circumstances, it has recently been demonstrated that black hole dynamics in asymptotically flat spacetime reduces to the dynamics of a non gravitational membrane propagating in flat D dimensional spacetime. We