ترغب بنشر مسار تعليمي؟ اضغط هنا

On the nature of diffuse ionized gas in galaxies -- I The contribution of dust scattering to diffuse line emission

170   0   0.0 ( 0 )
 نشر من قبل Yago Ascasibar
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we investigate the contribution of dust scattering to the diffuse H-alpha emission observed in nearby galaxies. As initial conditions for the spatial distribution of HII regions, gas, and dust, we take three Milky Way-like galaxies from state-of-the-art cosmological hydrodynamical simulations that implement different prescriptions for star formation, feedback, and chemical enrichment. Radiative transfer has been solved a posteriori, using the publicly-available Monte Carlo code Sunrise to take into account dust absorption and scattering of the H-alpha photons, originating exclusively from the HII regions. No contribution from recombinations in the diffuse ionized gas (DIG) component is explicitly or implicitly included in our model. Our main result is that the flux arising from scattered light is of the order of 1-2 per cent of the H-alpha flux coming directly from the HII regions. Building upon previous studies, we conclude that the DIG contributes lass than 50 per cent of the total H-alpha emission.



قيم البحث

اقرأ أيضاً

The Antennae Galaxy (NGC 4038/39) is the closest major interacting galaxy system and therefore often taken as merger prototype. We present the first comprehensive integral field spectroscopic dataset of this system, observed with the MUSE instrument at the ESO VLT. We cover the two regions in this system which exhibit recent star-formation: the central galaxy interaction and a region near the tip of the southern tidal tail. In these fields, we detect HII regions and diffuse ionized gas to unprecedented depth. About 15% of the ionized gas was undetected by previous observing campaigns. This newly detected faint ionized gas is visible everywhere around the central merger, and shows filamentary structure. We estimate diffuse gas fractions of about 60% in the central field and 10% in the southern region. We are able to show that the southern region contains a significantly different population of HII regions, showing fainter luminosities. By comparing HII region luminosities with the HST catalog of young star clusters in the central field, we estimate that there is enough Lyman-continuum leakage in the merger to explain the amount of diffuse ionized gas that we detect. We compare the Lyman-continuum escape fraction of each HII region against ionization-parameter sensitive emission line ratios. While we find no systematic trend between these properties, the most extreme line ratios seem to be strong indicators of density bounded ionization. Extrapolating the Lyman-continuum escape fractions to the southern region, we conclude that just from the comparison of the young stellar populations to the ionized gas there is no need to invoke other ionization mechanisms than Lyman-continuum leaking HII regions for the diffuse ionized gas in the Antennae.
Diffuse Ionized Gas (DIG) is prevalent in star-forming galaxies. Using a sample of 365 nearly face-on star-forming galaxies observed by MaNGA, we demonstrate how DIG in star-forming galaxies impacts the measurements of emission line ratios, hence the interpretation of diagnostic diagrams and gas-phase metallicity measurements. At fixed metallicity, DIG-dominated low Halpha surface brightness regions display enhanced [SII]/Halpha, [NII]/Halpha, [OII]/Hbeta, and [OI]/Halpha. The gradients in these line ratios are determined by metallicity gradients and Halpha surface brightness. In line ratio diagnostic diagrams, contamination by DIG moves HII regions towards composite or LI(N)ER-like regions. A harder ionizing spectrum is needed to explain DIG line ratios. Leaky HII region models can only shift line ratios slightly relative to HII region models, and thus fail to explain the composite/LI(N)ER line ratios displayed by DIG. Our result favors ionization by evolved stars as a major ionization source for DIG with LI(N)ER-like emission. DIG can significantly bias the measurement of gas metallicity and metallicity gradients derived using strong-line methods. Metallicities derived using N2O2 are optimal because they exhibit the smallest bias and error. Using O3N2, R23, N2=[NII]/Halpha, and N2S2Halpha (Dopita et al. 2016) to derive metallicities introduces bias in the derived metallicity gradients as large as the gradient itself. The strong-line method of Blanc et al. (2015; IZI hereafter) cannot be applied to DIG to get an accurate metallicity because it currently contains only HII region models which fail to describe the DIG.
There is strong evidence that the diffuse ionized gas (DIG) in disc galaxies is photoionized by radiation from UV luminous O and B stars in the galactic disc, both from observations and detailed numerical models. However, it is still not clear what m echanism is responsible for providing the necessary pressure support for a diffuse gas layer at kpc-scale above the disc. In this work we investigate if the pressure increase caused by photoionization can provide this support. We run self-consistent radiation hydrodynamics models of a gaseous disc in an external potential. We find that photoionization feedback can drive low levels of turbulence in the dense galactic disc, and that it provides pressure support for an extended diffuse gas layer. Our results show that there is a natural fine-tuning between the total ionizing radiation budget of the sources in the galaxy and the amount of gas in the different ionization phases of the ISM, and provide the first fully consistent radiation hydrodynamics model of the DIG.
96 - N. Vale Asari 2021
Estimates of gas-phase abundances based on strong-line methods have been calibrated for H~{scshape ii} regions. Those methods ignore any contribution from the diffuse ionized gas (DIG), which shows enhanced collisional-to-recombination line ratios in comparison to H~{scshape ii} regions of the same metallicity. Applying strong line methods whilst ignoring the role of the DIG thus systematically overestimates metallicities. Using integral field spectroscopy data, we show how to correct for the DIG contribution and how it biases the mass--metallicity--star formation rate relation.
We present the first kinematic study of extraplanar diffuse ionized gas (eDIG) in the nearby, face-on disk galaxy M83 using optical emission-line spectroscopy from the Robert Stobie Spectrograph on the Southern African Large Telescope. We use a Marko v Chain Monte Carlo method to decompose the [NII]$lambdalambda$6548, 6583, H$alpha$, and [SII]$lambdalambda$6717, 6731 emission lines into HII region and diffuse ionized gas emission. Extraplanar, diffuse gas is distinguished by its emission-line ratios ([NII]$lambda$6583/H$alpha gtrsim 1.0$) and its rotational velocity lag with respect to the disk ($Delta v = -24$ km/s in projection). With interesting implications for isotropy, the velocity dispersion of the diffuse gas, $sigma = 96$ km/s, is a factor of a few higher in M83 than in the Milky Way and nearby, edge-on disk galaxies. The turbulent pressure gradient is sufficient to support the eDIG layer in dynamical equilibrium at an electron scale height of $h_{z} = 1$ kpc. However, this dynamical equilibrium model must be finely tuned to reproduce the rotational velocity lag. There is evidence of local bulk flows near star-forming regions in the disk, suggesting that the dynamical state of the gas may be intermediate between a dynamical equilibrium and a galactic fountain flow. As one of the first efforts to study eDIG kinematics in a face-on galaxy, this study demonstrates the feasibility of characterizing the radial distribution, bulk velocities, and vertical velocity dispersions in low-inclination systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا